Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18519–18530 | Cite as

Microwave assisted CdO–ZnO–MgO nanocomposite and its photocatalytic and antibacterial studies

  • V. Revathi
  • K. Karthik
Article
  • 47 Downloads

Abstract

CdO–ZnO–MgO nanocomposite was synthesized by the microwave-assisted method and characterized by X-ray diffraction (XRD), FTIR, FESEM with energy dispersive X-ray spectrometry and TEM. XRD revealed the existence of the CdO (cubic)–ZnO (hexagonal)–MgO (cubic) structure with an average crystallite size of CdO (33 nm), ZnO (35 nm), MgO (30 nm) and also the dislocation density is evaluated. FTIR confirmed the presence of Cd–O, Zn–O and Mg–O by characteristic vibrational peaks at 863, 566 and 693 cm− 1. The surface morphological (FESEM and TEM) images appear the agglomerated rod-like structure. From the UV–Vis spectra, the bandgap is estimated as 2.67 eV. The prepared nanocomposite acts as an excellent photocatalyst for the removal of both dyes (Methylene blue and Congo red) under solar light irradiation. The antibacterial activity was carried out at different concentrations (25, 50, 75 and 100 µg/ml) in vitro against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholera, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi (G −ve); Bacillus subtilis (G +ve) bacteria. The zone of inhibition of 25 mm has a high antibacterial activity towards the gram-negative bacterium (P. vulgaris).

References

  1. 1.
    R.K. Raghupati, R.T. Koodali, A.C. Manna, Langmuir 27, 4020–4028 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Roselli, A. Finamore, I. Garaguso, M.S. Britti, E. Mengheri, J. Nutr. 133, 4077–4082 (2003)CrossRefGoogle Scholar
  3. 3.
    K. Karthik, S. Dhanuskodi, S. Prabukumar, C. Gobinath, S. Sivaramakrishnan, Mater. Lett. 206, 217–220 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Sharma, P. Sanjay Kumar, Nanosci. Nanotechnol. l2, 82 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Spectrochim. Acta A 139, 7–12 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Karthik, S. Dhanuskodi, Int. J. Emerg. Technol. Innov. Res. 5(3), 1022–1026 (2018). http://www.jetir.org/papers/JETIR1803194.pdf
  7. 7.
    K. Karthik, S. Dhanuskodi, S. Prabukumar, C. Gobinath, S. Sivaramakrishnan, J. Mater. Sci. Mater. Electron. 28, 11420–11429 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Qiu, X.L. Wu, F.Y. Jin, A.P. Huang, P.K. Chu, Appl. Surf. Sci. 253, 3987–3990 (2007)CrossRefGoogle Scholar
  9. 9.
    G. Duan, X. Yang, J. Chen, G. Huang, L. Lu, X. Wang, Powder Technol. 172, 27–29 (2007)CrossRefGoogle Scholar
  10. 10.
    J. Henry, K. Mohanraj, G. Sivakumar, S. Umamaheshwari, Spectrochim. Acta A 143, 172–178 (2015)CrossRefGoogle Scholar
  11. 11.
    O.A. Juma, E.A. Arbab, C.M. Muniva, L.M. Lepodise, G. Tessema Mola, J. Alloy Compd 723, 866–872 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Lei, J. Huo, H. Liao, Mater. Sci. Semicond. Process. 74, 154–164 (2018)CrossRefGoogle Scholar
  13. 13.
    T. Witoon, T. Numpilai, T. Phongamwong, W. Donphai, C. Boonyuen, C. Warakulwit, M. Chareonpanich, J. Limtrakul, Chem. Eng. J. 334, 1781–1791 (2018)CrossRefGoogle Scholar
  14. 14.
    G. Li, X. Zhang, W. Feng, X. Fang, J. Liu, Corros. Sci. 134, 140–148 (2018)CrossRefGoogle Scholar
  15. 15.
    Md. Abdus Subhan, T. Ahmed, Spectrochim. Acta A 129, 377–381 (2014)CrossRefGoogle Scholar
  16. 16.
    Md. Abdus Subhan, T. Ahmed, N. Uddin, Spectrochim. Acta A 138, 827–833 (2015)CrossRefGoogle Scholar
  17. 17.
    Md. Abdus Subhan, P.C. Saha, M.M. Alam, A.M. Asiri, M. Al-Mamun, M.M. Rahman, J. Environ. Chem. Eng. 6, 1396–1403 (2018)CrossRefGoogle Scholar
  18. 18.
    Md. Abdus Subhan, N. Uddin, P. Sarker, H. Nakata, R. Makioka, Spectrochim. Acta A 151, 56–63 (2015)CrossRefGoogle Scholar
  19. 19.
    Md. Abdus Subhan, N. Uddin, P. Sarker, A.K. Azad, K. Begum, Spectrochim. Acta A 149, 839–850 (2015)CrossRefGoogle Scholar
  20. 20.
    Md. Abdus Subhan, T. Ahmed, N. Uddin, A.K. Azad, K. Begum, Spectrochim. Acta A 136, 824–831 (2015)CrossRefGoogle Scholar
  21. 21.
    Md. Abdus Subhan, A.M.M. Fahim, P.C. Saha, M.M. Rahman, K. Begum, A.K. Azad, Nanostruct. Nanoobj. 10, 30–41 (2017)Google Scholar
  22. 22.
    Md. Abdus Subhan, N. Uddin, P. Sarker, T.T. Pakkanen, M. Suvanto, M. Horimoto, H. Nakata, J. Lumin. 148, 98–102 (2014)CrossRefGoogle Scholar
  23. 23.
    Md. Abdus Subhan, T. Ahamed, R. Awal, R. Makioka, H. Nakata, T.T. Pakkanen, M. Suvanto, B.M. Kim, J. Lumin. 148, 98–102 (2014)CrossRefGoogle Scholar
  24. 24.
    Md. Abdus Subhan, T. Ahmed, Md.R. Awal, M.A.M. Fahim, Spectrochim. Acta A 132, 550–554 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Karthik, S. Dhanuskodi, S. Prabukumar, C. Gobinath, S. Sivaramakrishnan, J. Mater. Sci. Mater. Electron. 29, 5459–5471 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Wada, M. Yano, T. Suzuki, T. Noma, J. Mater. Sci. 35, 3889–3902 (2000)CrossRefGoogle Scholar
  27. 27.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci. Mater. Electron. 28, 7991–8001 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Zhu, A. Apostoluk, P. Gautier, A. Valette, L. Omar, T. Cornier, J.M. Bluet, K. Masenelli-Varlot, S. Daniele, B. Maseneli, Sci. Rep. 6, 23567 (2016)CrossRefGoogle Scholar
  29. 29.
    T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, J. Alloy Compd 731, 1256–1266 (2018)CrossRefGoogle Scholar
  30. 30.
    S.N. Kane, S. Raghuvanshi, M. Satalkar, V.R. Reddy, U.P. Deshpande, T.R. Tatarchuk, F. Mazaleyrat, AIP Conf. Proc. 1953, 030055 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Raghuvanshi, S.N. Kane, T.R. Tatarchuk, F. Mazaleyrat, AIP Conf. Proc. 1953, 030089 (2018)CrossRefGoogle Scholar
  32. 32.
    V. Revathi, K. Karthik, J. Emerg. Technol. Innov. Res. 5(3), 1035–1039 (2018)Google Scholar
  33. 33.
    V. Revathi, K. Karthik, J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/S10854-018-9827-0 CrossRefGoogle Scholar
  34. 34.
    S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C 113, 17893–17898 (2009)CrossRefGoogle Scholar
  35. 35.
    E. Kandjani, M.F. Tabriz, N.A. Arefian, M.R. Vaezi, F. Halek, S.K. Sadrnezhaad, Water Sci. Technol. 62, 1256–1264 (2010)CrossRefGoogle Scholar
  36. 36.
    G.V. Khade, M.B. Suwarnkar, N.L. Gavade, P.M. Garadkar, J. Mater. Sci. Mater. Electron. 27, 6425–6432 (2016)CrossRefGoogle Scholar
  37. 37.
    G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, J. Alloys Compd 682 (2016) 208–215CrossRefGoogle Scholar
  38. 38.
    K. Nithiyadevi, K. Ravichandran, J. Mater. Sci. Mater. Electron. 28, 10929–10939 (2017)CrossRefGoogle Scholar
  39. 39.
    T. Linda, S. Muthupoongodi, X. Sahaya Shajan, S. Balakumar, Optik 127, 8287–8293 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Taufik, H. Tju, R. Saleh, J. Phys. Conf. Ser. 710, 012004–012010 (2016)CrossRefGoogle Scholar
  41. 41.
    P. Nuengmatcha, S. Chanthai, R. Mahachai, W.-C. Oh, Dyes Pigm. 134, 487–497 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Bagheri, A.R. Mahjoub, B. Mehri, RSC Adv. 4, 21757–21764 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Jana, A. Mondal, Appl. Mater. Interfaces 6, 15832–15840 (2014)CrossRefGoogle Scholar
  44. 44.
    P. Borthakur, P.K. Boruah, G. Darabdhara, P. Sengupta, M.R. Das, A.I. Boronin, L.S. Kibis, M.N. Kozlova, V.E. Fedorov, J. Environ. Chem. Eng. 4, 4600–4611 (2016)CrossRefGoogle Scholar
  45. 45.
    S.M. Patil, A.G. Dhodamani, S.A. Vanalakar, S.P. Deshmukh, S.D. Delekar, J. Phys. Chem. Solids 115, 127–136 (2018)CrossRefGoogle Scholar
  46. 46.
    K. Karthik, S. Dhanuskodi, C. Gopinath, S. Sivaramakrishnan, Int. J. Innov. Res. Sci. Eng. 558–561. http://ijirse.in/docs/ican14/ican105.pdf
  47. 47.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Mater. Res. Innov.  https://doi.org/10.1080/14328917.2018.1475443
  48. 48.
    K. Karthik, S. Dhanuskodi, S. Prabukumar, C. Gobinath, S. Sivaramakrishnan, J. Mater. Sci. Mater. Electron. 28, 16509–16518 (2017)CrossRefGoogle Scholar
  49. 49.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Phys. Chem. Solids 112, 106–118 (2018)CrossRefGoogle Scholar
  50. 50.
    A. Arumugam, C. Karthikeyan, A.S.H. Hameed, K. Gopinath, S. Gowri, V. Karthika, Mater. Sci. Eng. C 49, 408–415 (2015)CrossRefGoogle Scholar
  51. 51.
    M.H.S. Poor, M. Khatami, H. Azizi, Y. Abazari, Rend. Lincei 28, 693–699 (2017)CrossRefGoogle Scholar
  52. 52.
    S.M. Mortazavi, M. Khatami, I. Sharifi, H. Heli, K. Kaykavousi, M.H.S. Poor, S. Kharazi, M.A.L. Nobre, J. Clust. Sci. 28, 2997–3007 (2017)CrossRefGoogle Scholar
  53. 53.
    M. Khatami, I. Sharifi, M.A.L. Nobre, N. Zafarnia, M.R. Aflatoonian, Green Chem. Lett. Rev 11(2), 125–134 (2018)CrossRefGoogle Scholar
  54. 54.
    M. Khatami, H.Q. Alijani, M.S. Nejad, R.S. Varma, Appl. Sci. 8, 411–427 (2018).  https://doi.org/10.3390/app8030411 CrossRefGoogle Scholar
  55. 55.
    Md. Abdus Subhan, N. Uddin, P. Sarker, N.U. Ahmed, Adv. Sci. Eng. Med. 8(9), 676–688 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsJaya College of Arts and ScienceChennaiIndia
  2. 2.School of PhysicsBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations