Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18502–18510 | Cite as

Effective use of biomass ash as an ultra-high humidity sensor

  • Linchao Sun
  • Azhar Ali HaidryEmail author
  • Zhong Li
  • Lijuan Xie
  • Zhe Wang
  • Qawareer Fatima
  • Zhengjun YaoEmail author


The paper reports a facile, green, cost-effective, and sustainable track to fabricate humidity sensors with superior performance. This frugal way make use of biomass ashes, left by combustion and annealing of natural wood pulp paper, that can emerge as an alternative source of sensing materials. In comparison to other humidity sensors, the optimized humidity sensor based on annealed tissue ash exhibited ultra-high sensitivity of six orders of magnitude (∼106), excellent selectivity (against H2, CO, CH4) and good stability (1–8 weeks) in the range of 15–90% RH at room temperature. Further characterization was carried out to elucidate the sensing mechanism, which includes chemical composition, functional group, crystal structure, surface morphology and elemental composition of the ashes by XRF, FT-IR, XRD, SEM and EDS analysis, respectively. The proposed strategy and fabricated sensors also enable the real-time humidity monitoring in human breath, which demonstrates the feasibility of its practical application ability as a flexible and wearable humidity sensor.



We thank the Funding of “Priority Academic Program Development of Jiangsu Higher Education Institutions” (PAPD) and “Natural Science Foundation of Jiangsu Province” (BK20170795) for providing major financial support. Dr. Azhar Ali Haidry thanks NUAA for providing start-up research funding.


  1. 1.
    Y. Zhang, Z. Duan, H. Z, M. Ma, Drawn a facile sensor: A fast response humidity sensor based on pencil-trace. Sens. Actuators B: Chem. 261, 345–353 (2018)CrossRefGoogle Scholar
  2. 2.
    S.Y. Park, Y.H. Kim, S.Y. Lee, W. Sohn et al., Highly selective and sensitive chemoresistive humidity sensors based on rGO/MoS2 van der Waals composites. J. Mater. Chem. A 6, 5016–5024 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Choi, H. Yu, J. Jang et al., Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 14, 1703934 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Li, L. Li, H. Sun, Y. Xu, X. Wang, H. Luo, Z. Liu, T. Zhang, Porous ionic membrane based flexible humidity sensor and its multifunctional applications. Adv. Sci. 4, 1600404 (2017)CrossRefGoogle Scholar
  5. 5.
    Z. Li, A.A. Haidry, B. Gao, T. Wang, Z.J. Yao, The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl. Surf. Sci. 412, 638–647 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Sun, A.A. Haidry, Q. Fatima, Z. Li, Z. Yao, Improving the humidity sensing below 30% RH of TiO2 with GO modification. Mater. Res. Bull. 99, 124–131 (2018)CrossRefGoogle Scholar
  7. 7.
    X. Liu, Y. Wen, B. Shan, K. Cho, Z. Chen, R. Chen, Combined effects of defects and hydroxyl groups on the electronic transport properties of reduced graphene oxide. Appl. Phys. A 118, 885–892 (2015)CrossRefGoogle Scholar
  8. 8.
    Y.T. Lai, J.C. Kuo, Y.J. Yang, A novel gas sensor using polymer-dispersed liquid crystal doped with carbon nanotubes. Sens. Actuators B 215, 83–88 (2014)CrossRefGoogle Scholar
  9. 9.
    P. Su, C. Chiou, Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate. Sens. Actuators B 200, 9–18 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Qian, P.C. Lan, M.C. Freyman et al. Ultralight conductive silver nanowire aerogels. Nano Lett. 17, 7171–7176 (2017)CrossRefGoogle Scholar
  11. 11.
    N.S. Trivedi, S.A. Mandavgane, B.D. SayajiMehetre, Kulkarni, Characterization and valorization of biomass ashes. Environ. Sci. Pollut. Res. 23, 20243–20256 (2016)CrossRefGoogle Scholar
  12. 12.
    R. Abraham, J. George, J. Thomas, K.K.M. Yusuff, Physicochemical characterization and possible applications of the waste biomass ash from oleoresin industries of India. Fuel 109, 366–372 (2013)CrossRefGoogle Scholar
  13. 13.
    E. Romero, M. Quirantes, R. Nogales, Characterization of biomass ashes produced at different temperatures from olive-oil-industry and greenhouse vegetable wastes. Fuel 208, 1–9 (2017)CrossRefGoogle Scholar
  14. 14.
    G. Pathak, D. Das, K. Rajkumari, L. Rokhum, Exploiting waste: towards a sustainable production of biodiesel using Musa acuminata peel ash as a heterogeneous catalyst. Green Chem. 20, 2365–2373 (2018)CrossRefGoogle Scholar
  15. 15. Accessed 18 Feb 2005
  16. 16.
    A.A. Haidry, L. Sun, B. Saruhan, A. Plecenik, T. Plecenik, H. Shen, Z. Yao, Cost-effective fabrication of polycrystalline TiO2 with tunable n/p conductivity for selective hydrogen monitoring. Sens. Actuators B 274, 10–21 (2018)CrossRefGoogle Scholar
  17. 17.
    F. Suárez-García, A. Martínez-Alonso, M. Fernández Llorente, J.M.D. Tascón, Inorganic matter characterization in vegetable biomass feedstocks. Fuel 81, 1161–1169 (2002)CrossRefGoogle Scholar
  18. 18.
    N.S. Trivedi, S.A. Mandavgane, A. Chaurasia, Characterization and valorization of biomass char: a comparison with biomass ash. Environ. Sci. Pollut. Res. 25, 3458–3467 (2018)CrossRefGoogle Scholar
  19. 19.
    N.S. Trivedi, S.A. Mandavgane, S. Mehetre, B.D. Kulkarni, Characterization and valorization of biomass ashes. Environ. Sci. Pollut. Res. 23, 20243–20256 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Sangita, N. Nayak, C.R. Panda, Extraction of aluminium as aluminium sulphate from thermal power plant fly ashes. Trans. Nonferrous Met. Soc. China 27, 2082–2089 (2017)CrossRefGoogle Scholar
  21. 21.
    D. Li, J. Zhang, L. Shen, W. Dong, C. Feng, C. Liu, S. Ruan, Humidity sensing properties of SrTiO3 nanospheres with high sensitivity and rapid response. RSC Adv. 5, 22879–22883 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Zhang, X. Zong, Z. Wu, Y. Zhang, Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film, Sens. Actuators B 266, 52–62 (2018).CrossRefGoogle Scholar
  23. 23.
    T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, J. Zhang, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor. Appl. Surf. Sci. 242, 212–217 (2005)CrossRefGoogle Scholar
  25. 25.
    Y. Tan, K. Yu, T. Yang, Q. Zhang, W. Cong, H. Yin, Z. Zhang, Y. Chen, Z. Zhu, The combinations of hollow MoS2 micro@nanospheres: one-step synthesis, excellent photocatalytic and humidity sensing properties. J. Mater. Chem. C 2, 5422–5430 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714 (2013)CrossRefGoogle Scholar
  27. 27.
    H. Singh, V.K. Tomer, N. Jena, I. Bala, N. Sharma, D. Nepak, A.D. Sarkar, K. Kailasam, S.K. Pal, A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 5, 21820–21827 (2017)CrossRefGoogle Scholar
  28. 28.
    D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999)CrossRefGoogle Scholar
  29. 29.
    M. Zhong, Z. Wei, X. Meng, F. Wu, J. Li, Ultra-sensitive humidity sensors based on ZnSb2O4 nanoparticles. RSC Adv. 5, 2429–2433 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Key Laboratory of Materials Preparation and Protection for Harsh EnvironmentMinistry of Industry and Information TechnologyNanjingChina

Personalised recommendations