Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18465–18475 | Cite as

Novel sol–gel synthesis of Al/N co-doped TiO2 nanoparticles and their structural, optical and photocatalytic properties

  • Mahesh DhondeEmail author
  • Kirti Sahu Dhonde
  • V. V. S. Murty


In the present investigation novel Aluminium/Nitrogen (Al/N)-codoped TiO2 nanoparticles (NPs) have been prepared via sol–gel route under mild conditions. The structural, optical, morphological and compositional properties of all the prepared samples have been characterized by X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope, Transmission Electron Microscopy, UV–Vis spectroscopy (UV–Vis) and Photoluminescence Spectroscopy (PL). XRD results reveal that the doping of Al in TiO2 nanostructure hinders its crystal growth and stabilizes the crystal structure. XPS result confirms the successful incorporation of Al and N in TiO2 structure. UV–Vis measurement shows a distinct alteration in the optical properties of TiO2 resulting in red shift i.e. lower band gap values relative to undoped TiO2 NPs. Moreover, PL spectra reveal prolonged electron–hole pair lifetime for efficient photocatalytic performance. Thus, Al/N co-doped samples exhibit enhanced absorption, retarded charge carrier recombination and hence excellent photocatalytic activity for degradation of methylene blue (MB) solution under visible light irradiation. A sample doped with 2 wt% Al/N-doped TiO2 NPs shows best photocatalytic activity among all other samples.



The authors are thankful to Indian Nanoelectronics user programme (INUP-IITB) (13DIT006) for availing financial support, which is sponsored by DIT, MCIT, Government of India. Authors are also thankful to V. Ganeshan, R.J. Choudhary, V. Deshpande and Mukul Gupta scientists IUC-DAE CSR, Indore for lab support and fruitful discussions.


  1. 1.
    X. Tang, X. Liu, L. Zhang, Y. Xing, Y. Tian, Chem. Phys. 441, 121 (2014)CrossRefGoogle Scholar
  2. 2.
    Q. Huang, G. Zhou, L. Fang, L. Hu, Z.S. Wang, Energy Environ. Sci. 4, 2145 (2011)CrossRefGoogle Scholar
  3. 3.
    T. Edvinsson, N. Pschirer, J. Schoneboom, F. Eickemeyer, G. Boschloo, A. Hagfeldt, Chem. Phys. 357, 124 (2009)CrossRefGoogle Scholar
  4. 4.
    Z.Q. Li, Y.P. Que, L.E. Mo, W.C. Chen, Y. Ding, Y.M. Ma, L. Jiang, L.H. Hu, S.Y. Dai, ACS Appl. Mater. Interfaces 7, 10928 (2015)CrossRefGoogle Scholar
  5. 5.
    M.A. Ahmed, Z.M. Abou-Gamra, A.M. Salem, J. Environ. Chem. Eng. 5, 4251 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Tabasideh, A. Maleki, B. Shahmoradi, E. Ghahremani, G. McKay, Sep. Purif. Technol. 189, 186 (2017)CrossRefGoogle Scholar
  7. 7.
    S.N. Hoseinia, A.K. Pirzaman, M.A. Aroon, A.E. Pirbazari, J. Water Process. Eng. 17, 124 (2017)CrossRefGoogle Scholar
  8. 8.
    R. Atchudana, T. Nesakumar, J.I. Edisona, S. Perumal, N. Karthik, D. Karthikeyan, M. Shanmugam, Y.R. Lee, J. Photochem. Photobiol. A 350, 75 (2018)CrossRefGoogle Scholar
  9. 9.
    P.S. Saud, B. Pant, M. Park, S.-H. Chae, S.-J. Park, M. EI-Newehy, S.S. Al-Deyab, H.-Y. Kim, Ceram. Int. 41, 1771 (2015)CrossRefGoogle Scholar
  10. 10.
    X. Li, J. Yu, G. Li, H. Liu, A. Wang, L. Yang, W. Zhou, B. Chu, S. Liu, J. Colloid Interface Sci. 526, 158 (2018)CrossRefGoogle Scholar
  11. 11.
    S.A. Bakar, G. Byzynski, C. Ribeiro, J. Alloys Compd. 666, 38 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114, 9987 (2014)CrossRefGoogle Scholar
  13. 13.
    A.K. Gupta, P. Srivastava, L. Bahadur, Appl. Phys. A 122, 724 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Dhonde, K. Sahu, V.V.S. Murty, S.S. Nemala, P. Bhargava, Electrochim. Acta 249, 89 (2017)CrossRefGoogle Scholar
  15. 15.
    I.C. Maurya, A.K. Gupta, P. Srivastava, L. Bahadur, J. Solid State Electrochem. 21, 1229 (2017)CrossRefGoogle Scholar
  16. 16.
    C.S. Chou, F.C. Chou, Y.G. Ding, P. Wu, Sol. Energy 86, 1435 (2012)CrossRefGoogle Scholar
  17. 17.
    G. Wu, T. Nishikawa, B. Ohtani, A. Chen, Chem. Mater. 19, 4530 (2007)CrossRefGoogle Scholar
  18. 18.
    B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu, P. Zhang, Z. Cheng, H.K. Liu, Z. Huang, ACS Appl. Mater. Interfaces 8, 16009 (2016)CrossRefGoogle Scholar
  19. 19.
    H. Tian, L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, S. Dai, J. Phys. Chem. C 114, 1627 (2010)CrossRefGoogle Scholar
  20. 20.
    P. Dong, B. Liu, Y. Wang, H. Pei, S. Yin, J. Mater. Res. 25, 2392 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Wang, X.J. Yang, Q. Jiang, J.S. Lian, Mater. Sci. Semicond. Process. 24, 247 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Dhonde, K. Sahu, V.V.S. Murty, S.S. Nemala, P. Bhargava, S. Mallick, J. Mater. Sci. 29, 6274 (2018)Google Scholar
  23. 23.
    S. Sathasivam, D.S. Bhachu, Y. Lu, N. Chadwick, S.A. lthabaiti, A.O. Alyoubi, S.N. Basahel, C.J. Carmalt, I.P. Parkin, Sci. Rep. 5, 10952 (2015)CrossRefGoogle Scholar
  24. 24.
    L.M. Santos, W.A. Machado, M.D. França, K.A. Borges, R.M. Paniago, A.O.T. Patrocinio, A.E.H. Machado, RSC Adv. 5, 103752 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Khojasteh, M. Salavati-Niasari, F.S. Sangsefidi, J. Alloys Compd. 746, 611 (2018)CrossRefGoogle Scholar
  26. 26.
    A.T. Kuvarega, N. Khumalo, D. Dlamini, B.B. Mamba, Sep. Purif. Technol. 191, 122 (2018)CrossRefGoogle Scholar
  27. 27.
    M.Z. Musa, K.A. Kasbi, A.A. Aziz, M.S.P. Sarah, M.H. Mamat, M. Rusop, Mater. Res. Innov. 15, 137 (2011)CrossRefGoogle Scholar
  28. 28.
    Q.P. Liu, H.J. Huang, Y. Zhou, Y.D. Duan, Q.W. Sun, Y. Lin, Acta Phys. Chim. Sin. 28, 591 (2012)Google Scholar
  29. 29.
    M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Inorg. Chem. 51, 7764 (2012)CrossRefGoogle Scholar
  30. 30.
    S.A. Ansari, M.M. Khan, M.O. Ansaric, M.H. Cho, New J. Chem. 40, 3000 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Kotzamanidi, Z. Frontistis, V. Binas, G. Kiriakidis, D. Mantzavinos, Catal. Today 313, 148 (2018)CrossRefGoogle Scholar
  32. 32.
    J.A. Cha, S.H. An, H.D. Jang, C.S. Kim, D.K. Song, T.O. Kim, Adv. Powder Technol. 23, 717 (2011)CrossRefGoogle Scholar
  33. 33.
    A.A. Murashkina, P.D. Murzin, A.V. Rudakova, V.K. Ryabchuk, A.V. Emeline, D.W. Bahnemann, J. Phys. Chem. C 119, 24695 (2015)CrossRefGoogle Scholar
  34. 34.
    M.B. Suwarnkar, G.V. Khade, S.B. Babar, K.M. Garadkar, J. Mater. Sci. 28, 17140 (2017)Google Scholar
  35. 35.
    S.S. Thind, G. Wu, M. Tian, A. Chen, Nanotechnology 23, 475706 (2012)CrossRefGoogle Scholar
  36. 36.
    I. Iatsunskyi, M. Kempinski, M. Jancelewicz, K. Zaleski, S. Jurga, V. Smyntyna, Vaccum 113, 52 (2015)CrossRefGoogle Scholar
  37. 37.
    N. Pugazhenthirana, S. Murugesana, S. Anandan, J. Hazard. Mater. 263, 541 (2013)CrossRefGoogle Scholar
  38. 38.
    E. Bet-moushoul, Y. Mansourpanah, K. Farhadi, M. Tabatabaei, Chem. Eng. J. 283, 29 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Amreetha, S. Dhanuskodi, A. Nithya, K. Jothivenkatachalam, RSC Adv. 6, 7854 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Cheng, G. Zeng, D. Huang, C. Lai, Y. Liu, C. Zhang, J. Wan, L. Hu, C. Zhou, W. Xiong, Water Res. 138, 7 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPrestige Institute of Engineering Management & ResearchIndoreIndia
  2. 2.Department of PhysicsGovt. Holkar Science CollegeIndoreIndia

Personalised recommendations