Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18441–18448 | Cite as

Stable colossal permittivity and low loss in (In0.5Nb0.5)0.005Ti0.995O2 + x mol% ZrTiO4 composite ceramics under DC bias voltage

  • Xiulei Cui
  • Peng Liu
  • Baochun Guo
  • Yuechan Song
Article
  • 43 Downloads

Abstract

In this study, (In0.5Nb0.5)0.005Ti0.995O2 + x mol% ZrTiO4 (INTO–xZT) (0 ≤ x ≤ 75) composite ceramics were fabricated using a conventional solid-state reaction method. The effects of ZrTiO4 phase on the microstructure, dielectric properties, and response to DC bias were investigated. XRD and SEM results indicated that the co-doped TiO2 and ZrTiO4 coexisted well. ε′ decreased with increasing ZrTiO4 content x. For the sample with x = 20, ε′ = 9940, tanδ = 0.03, and temperature coefficient of permittivity (@ 1 kHz) variation < ± 15% over the temperature range from − 60 °C to 85 °C were obtained. The grain-boundary resistance (Rgb) increased by almost two orders of magnitude in contrast to that of the sample with x = 0. Stable colossal permittivity and low loss under DC bias (500 V/cm) were observed for the sample with x = 20. These outstanding dielectric properties were attributed to the considerable improvement in Rgb and the smaller grain size of the composite ceramics with appropriate ZrTiO4 content.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 51572162) and the Fundamental Research Funds for the Central Universities (GK201604006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, Nat. Mater. 10, 899 (2011)CrossRefGoogle Scholar
  2. 2.
    J.I. Roscow, C.R. Bowen, D.P. Almond, ACS Energy Lett. 2, 2264 (2017)CrossRefGoogle Scholar
  3. 3.
    W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821 (2013)CrossRefGoogle Scholar
  4. 4.
    C.C. Homes, T. Vogt, Nat. Mater. 12, 782 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Wang, B. Zhang, G. Shen, L. Sun, Y. Hu, L. Shi, X. Wang, C. Jie, L. Zhang, Ceram. Int. 43, 13349 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Yu, Y. Zhao, T.-D. Zhang, R.-X. Song, Y.-L. Zhang, Y.-L. Qiao, W.-L. Li, W.-D. Fei, Ceram. Int. 44, 6866 (2018)CrossRefGoogle Scholar
  7. 7.
    W. Hu, K. Lau, Y. Liu, R.L. Withers, H. Chen, L. Fu, B. Gong, W. Hutchison, Chem. Mater. 27, 4934 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Song, P. Liu, X. Zhao, B. Guo, X. Cui, J. Alloys Compd. 722, 676 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, S. Maensiri, J. Alloys Compd. 703, 139 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Cheng, Z. Li, J. Wu, J. Mater. Chem. A 3, 5805 (2015)CrossRefGoogle Scholar
  11. 11.
    W. Dong, W. Hu, T.J. Frankcombe, D. Chen, C. Zhou, Z. Fu, L. Cândido, G. Hai, H. Chen, Y. Li, R.L. Withers, Y. Liu, J. Mater. Chem. A 5, 5436 (2017)CrossRefGoogle Scholar
  12. 12.
    C. Yang, M.Y. Tse, X. Wei, J. Hao, J. Mater. Chem. C 5, 5170 (2017)CrossRefGoogle Scholar
  13. 13.
    Z. Li, J. Wu, W. Wu, J. Mater. Chem. C 3, 9206 (2015)CrossRefGoogle Scholar
  14. 14.
    Z. Li, X. Luo, W. Wu, J. Wu, J. Am. Ceram. Soc. 100, 3004 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Yang, X. Wei, J. Hao, J. Am. Ceram. Soc. 101, 307 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Nachaithong, W. Tuichai, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, J. Eurp. Ceram. Soc. 37, 3521 (2017)CrossRefGoogle Scholar
  17. 17.
    W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Mater. Des. 123, 15 (2017)CrossRefGoogle Scholar
  18. 18.
    K. Tsuji, H. Han, S. Guillemet-Fritsch, C.A. Randall, Phys. Chem. Chem. Phys. 19, 8568 (2017)CrossRefGoogle Scholar
  19. 19.
    X. Wang, B. Zhang, L. Xu, X. Wang, Y. Hu, G. Shen, L. Sun, Sci. Rep. 7, 8517 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Wei, W. Jie, Z. Yang, F. Zheng, H. Zeng, Y. Liu, J. Hao, J. Mater. Chem. C 3, 11005 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.Q. Wu, X. Zhao, J.L. Zhang, W.B. Su, J. Liu, Appl. Phys. Lett. 107, 242904 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Song, X. Wang, Y. Sui, Z. Liu, Y. Zhang, H. Zhan, B. Song, Z. Liu, Z. Lv, L. Tao, J. Tang, Sci. Rep. 6, 21478 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Li, F. Li, C. Li, G. Yang, Z. Xu, S. Zhang, Sci. Rep. 5, 8295 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Kawarasaki, K. Tanabe, I. Terasaki, Y. Fujii, H. Taniguchi, Sci. Rep. 7, 5351 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Zhao, P. Liu, J. Am. Ceram. Soc. 100, 3505 (2017)CrossRefGoogle Scholar
  26. 26.
    E.A. Patterson, S. Kwon, C.-C. Huang, D.P. Cann, Appl. Phys. Lett. 87, 182911 (2005)CrossRefGoogle Scholar
  27. 27.
    W. Kobayashi, I. Terasaki, Appl. Phys. Lett. 87, 032902 (2005)CrossRefGoogle Scholar
  28. 28.
    L. Liu, L. Fang, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, C. Hu, J. Appl. Phys. 110, 094101 (2011)CrossRefGoogle Scholar
  29. 29.
    B. Shri Prakash, K.B.R. Varma, J. Solid State Chem. 180, 1918 (2007)CrossRefGoogle Scholar
  30. 30.
    L. Li, T. Lu, N. Zhang, J. Li, Z. Cai, J. Mater. Chem. C 6, 2283 (2018)CrossRefGoogle Scholar
  31. 31.
    X. Zhu, L. Yang, J. Li, L. Jin, L. Wang, X. Wei, Z. Xu, F. Li, Ceram. Int. 43, 6403 (2017)CrossRefGoogle Scholar
  32. 32.
    J. Li, Z. Xu, F. Li, X. Zhu, S. Zhang, RSC Adv. 6, 20074 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Guo, P. Liu, X. Cui, Y. Song, J. Alloys Compd. 740, 1108 (2018)CrossRefGoogle Scholar
  34. 34.
    Q. Yuan, Y. Wang, H. Wang, IEEE Trans. Dielectr. Electr. Insul. 24, 712 (2017)CrossRefGoogle Scholar
  35. 35.
    M.Y. Tse, X. Wei, J. Hao, Phys. Chem. Chem. Phys. 18, 24270 (2016)CrossRefGoogle Scholar
  36. 36.
    C. Zhao, J. Wu, ACS Appl. Mater. Interfaces 10, 3680 (2018)CrossRefGoogle Scholar
  37. 37.
    B. Guo, P. Liu, X. Cui, Y. Song, J. Alloys Compd. 768, 368 (2018)CrossRefGoogle Scholar
  38. 38.
    T. Noguchi, M. Mizuno, Bull. Chem. Soc. Jpn. 41, 2895 (1968)CrossRefGoogle Scholar
  39. 39.
    S. Hillier, Clay Miner. 35, 291 (2000)CrossRefGoogle Scholar
  40. 40.
    M.A. Sulaiman, S.D. Hutagalung, J.J. Mohamed, Z.A. Ahmad, M.F. Ain, B. Ismail, J. Alloys Compd. 509, 5701 (2011)CrossRefGoogle Scholar
  41. 41.
    G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, RSC Adv. 6, 48708 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Tuichai, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, RSC Adv. 7, 95 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiulei Cui
    • 1
  • Peng Liu
    • 1
  • Baochun Guo
    • 1
  • Yuechan Song
    • 1
  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations