Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18426–18431 | Cite as

A new glass–ceramic with low permittivity for LTCC application

  • Denghui Jiang
  • Jingjing Chen
  • Baobiao Lu
  • Juan Xi
  • Guohua ChenEmail author


The phase evolution and dielectric properties of 10CaO–40ZnO–15B2O3–35P2O5 (in wt%) glass–ceramics were investigated. Three kinds of crystalline phases including Ca2B2O5, CaZn2(PO4)2 and Zn3(PO4)2 are formed in the sintered glass–ceramics. The dielectric properties change significantly with sintering temperature and phase composition. The optimum microwave dielectric properties of εr = 4.32, Q×f = 16820 GHz (at 13.44 GHz) and τf = − 27 ppm/°C have been achieved after sintering at 740 °C for 2 h. Moreover, the glass–ceramic is chemically compatible with silver (Ag) electrode under the co-fired process. This finding would make the as-prepared glass–ceramic promising candidate for LTCC application.



This work was financially supported by National Undergraduate Innovation Program of the Ministry of Education of China (Nos. 201810595014, 201810595015), Undergraduate Innovation Program of Guangxi (No. 201610595186) and the Research funds of The Guangxi Key Laboratory of Information Materials (No. 171002-Z).


  1. 1.
    H.H. Xi, D. Zhou, H.D. Xie, B. He, Q.P. Wang, R. Spectra, Infrared spectra, and microwave dielectric properties of low-temperature firing [(Li0.5Ln0.5)1–xCax]MoO4 (Ln = Sm and Nd) solid solution ceramics with scheelite structure. J. Am. Ceram. Soc. 98, 587–593 (2015)CrossRefGoogle Scholar
  2. 2.
    C.C. Xia, D.H. Jiang, G.H. Chen, Y. Luo, B. Li, C.L. Yuan, C.R. Zhou, Microwave dielectric ceramic of LiZnPO4 for LTCC applications. J. Mater. Sci.: Mater. Electron. 28, 12026–12031 (2017)Google Scholar
  3. 3.
    M.S. Ma, Z.Q. Fu, Z.F. Liu, Y.X. Li, Fabrication and microwave dielectric properties of CuO-B2O3-Li2O glass-ceramic with ultra-low sintering temperature. Ceram. Int. 43, S292–S295 (2017)CrossRefGoogle Scholar
  4. 4.
    H.F. Zhou, X.H. Tan, J. Huang, N. Wang, G.C. Fan, X.L. Chen, Phase structure, sintering behavior and adjustable microwave dielectric properties of Mg1–xLi2xTixO1+2x solid solution ceramics. J. Alloys Compd. 696, 1255–1259 (2017)CrossRefGoogle Scholar
  5. 5.
    M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater. 20, 151–170 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Rajesh, H. Jantunen, Low temperature sintering and dielectric properties of alumina-filled glass composites for LTCC applications. Int. J. Appl. Ceram. Technol. 9, 52–59 (2012)CrossRefGoogle Scholar
  7. 7.
    D. Zhou, C.A. Randall, A. Baker, H. Wang, L.X. Pang, X. Yao, Dielectric properties of an ultra-low-temperature cofiring BiMo2O9 multilayer. J. Am. Ceram. Soc. 93, 1443–1446 (2010)Google Scholar
  8. 8.
    H.T. Yu, K. Ju, K.M. Wang, A novel glass-ceramic with ultra-low sintering temperature for LTCC application. J. Am. Ceram. Soc. 97, 704–707 (2014)CrossRefGoogle Scholar
  9. 9.
    U. Došler, M.M. Kržmanc, D. Suvorov, The synthesis and microwave dielectric properties of Mg3B2O6 and Mg2B2O5 ceramics. J. Eur. Ceram. Soc. 30, 413–418 (2010)CrossRefGoogle Scholar
  10. 10.
    C.C. Chiang, S.F. Wang, Y.R. Wang, W.C.J. Wei, Densification and microwave dielectric properties of CaO–B2O3–SiO2 system glass–ceramics. Ceram. Int. 34, 599–604 (2008)CrossRefGoogle Scholar
  11. 11.
    I.J. Induja, M.T. Sebastian, Microwave dielectric properties of SnO-SnF2-P2O5 glass and its composite with alumina for ULTCC applications. J. Am. Ceram. Soc. 1, 1–9 (2017)Google Scholar
  12. 12.
    Y.J. Chu, J.H. Jean, Low-fire processing of microwave BaTi4O9 dielectric with crystalline CuB2O4 and BaCuB2O5 additives. Ceram. Int. 39, 5151–5158 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Zhu, M. Liu, H. Zhou, L. Li, A. Lv, Study on properties of CaO–B2O3–SiO2 system glass–ceramic. Mater. Res. Bull. 42, 1137–1144 (2007)CrossRefGoogle Scholar
  14. 14.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Techn. 8, 402–410 (1960)CrossRefGoogle Scholar
  15. 15.
    B.D. Silverman, Microwave Absorption in cubic strontium titanate. Phys. Rev. 125, 1921–1930 (1962)CrossRefGoogle Scholar
  16. 16.
    X.P. Huang, C.L. Yuan, X.Y. Liu, F. Liu, Q. Feng, J.W. Xu, C.R. Zhou, G.H. Chen, Effects of P2O5 on crystallization, sinterability and microwave dielectric properties of MgO-Al2O3-SiO2-TiO2 glass-ceramics. J. Non-Cryst. Solids 459, 123–129 (2017)CrossRefGoogle Scholar
  17. 17.
    J.J. Qu, F. Liu, C.L. Yuan, G.H. Chen, X.P. Huang, R.F. Ma, Effects of two-step heat treatment on crystallization behavior, densification and microwave dielectric properties of MgO-Al2O3-SiO2-TiO2-Sb2O3 glass-ceramics. J. Non-Cryst. Solids 471, 400–405 (2017)CrossRefGoogle Scholar
  18. 18.
    X.H. Zhou, E.Z. Li, S.L. Yang, B. Li, B. Tang, Y. Yuan, S.R. Zhang, Effects of La2O3-B2O3 on the flexural strength and microwave dielectric properties of low temperature co-fired CaO-B2O3-SiO2 glass–ceramic. Ceram. Int. 38, 5551–5555 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Denghui Jiang
    • 1
  • Jingjing Chen
    • 1
  • Baobiao Lu
    • 1
  • Juan Xi
    • 1
  • Guohua Chen
    • 1
    Email author
  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations