Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18404–18416 | Cite as

Effect of electroplating parameters on electroplated Cu film and microvoid formation of solder joints

  • Yongqiang Wan
  • Xiaoli Liu
  • Xiaowu Hu
  • Zhixian Min
  • Guangbin Yi
  • Xiongxin Jiang
  • Yulong Li
Article
  • 49 Downloads

Abstract

The influences of electroplating parameters on electroplated Cu (EPC) film and void formation at the Sn3.0Ag0.5Cu (SAC305)/Cu interface were investigated. It is found that the size of Cu particles increased with the increase of current density or deposit thickness. The surface roughness of Cu films also increased with increasing current density. And the surface roughness of EPC films demonstrated decrement at first and then increment with the increase of deposit thickness. It is observed that the electrodeposition with higher current density or thicker Cu film tended to inhibit the growth of Cu(111) and favor the growth of Cu(220). After reflowing and thermal aging, the voiding level increased greatly as the current density and deposit thickness increased, and that total microvoid area increased gradually with increasing aging time for all electroplating conditions. Additionally, the variation in the current density and deposit thickness did not influence the intermetallic compound growth rate.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51465039 and 51765040), Natural Science Foundation of Jiangxi Province (20161BAB206122 and 20161BAB206128).

References

  1. 1.
    P. Borgesen, L.A. Yin, P. Kondos, Assessing the risk of “Kirkendall voiding” in Cu3Sn. Microelectron. Reliab. 51, 837–846 (2011)CrossRefGoogle Scholar
  2. 2.
    L. Yin, P. Borgesen, On the root cause of Kirkendall voiding in Cu3Sn. J. Mater. Res. 26, 455–466 (2011)CrossRefGoogle Scholar
  3. 3.
    J.Y. Kim, J. Yu, T.Y. Lee, in Proceedings of the IEEE 57th electronic components & technology conference (IEEE, New York, 2007), pp. 1620–1625Google Scholar
  4. 4.
    P. Borgesen, L. Yin, P. Kondos, D.W. Henderson, G. Servis, J. Therriault et al. in Proceedings of the IEEE 57th electronic components & technology conference (IEEE, New York, 2007), pp. 136–146Google Scholar
  5. 5.
    K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, K.N. Tu, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97, 024508 (2005)CrossRefGoogle Scholar
  6. 6.
    Y.W. Wang, Y.W. Lin, C.R. Kao, Kirkendall voids formation in the reaction between Ni-doped SnAg lead-free solders and different Cu substrates. Microelectron. Reliab. 49, 248–252 (2009)CrossRefGoogle Scholar
  7. 7.
    J.J. Yu, C.A. Yang, Y.F. Lin, C.H. Hsueh, C.R. Kao, Optimal Ag addition for the elimination of voids in Ni/SnAg/Ni micro joints for 3D IC applications. J. Alloys Compd. 629, 16–21 (2015)CrossRefGoogle Scholar
  8. 8.
    H.Y. Chuang, J.J. Yu, M.S. Kuo, H.M. Tong, C.R. Kao, Elimination of voids in reactions between Ni and Sn: a novel effect of silver. Scripta Mater. 66, 171–174 (2012)CrossRefGoogle Scholar
  9. 9.
    C.K. Chung, Y.J. Chen, W.M. Chen, C.R. Kao, Origin and evolution of voids in electroless Ni during soldering reaction. Acta Mater. 60, 4586–4593 (2012)CrossRefGoogle Scholar
  10. 10.
    P.T. Vianco, J.A. Rejent, P.F. Hlava, Solid-state intermetallic compound layer growth between copper and 95.5Sn-3.9Ag-0.6Cu solder. J. Electron. Mater. 33, 991–1004 (2004)CrossRefGoogle Scholar
  11. 11.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng. R 49, 1–60 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Yang, R.W. Messler, L.E. Felton, Microstructure evolution of eutectic Sn-Ag solder joints. J. Electron. Mater. 23, 765–772 (1994)CrossRefGoogle Scholar
  13. 13.
    J. Yu, J.Y. Kim, Effects of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints. Acta Mater. 56, 5514–5523 (2008)CrossRefGoogle Scholar
  14. 14.
    J.Y. Kim, J. Yu, Effect of residual impurities in electroplated Cu films on the Kirkendall void formation during soldering. Appl. Phys. Lett. 92, 092109 (2008)CrossRefGoogle Scholar
  15. 15.
    J.Y. Kim, J. Yu, S.H. Kim, Effects of sulfide-forming element additions on the Kirkendall void formation and drop impact reliability of Cu/Sn-3.5Ag solder joints. Acta Mater. 57, 5001–5012 (2009)CrossRefGoogle Scholar
  16. 16.
    S. Kim, J. Yu, Effects of Ag on the Kirkendall void formation of Sn-xAg/Cu solder joints. J. Appl. Phys. 108, 083532 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Yu, J. Chen, Z. Cheng, Y. Huang, J. Chen, J. Xu, H. Lu, Fine grained Cu film promoting Kirkendall voiding at Cu3Sn/Cu interface. J. Alloys Compd. 660, 80–84 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Liu, J. Wang, L. Yin, P. Kondos, C. Parks, P. Borgesen et al., Influence of plating parameters and solution chemistry on the voiding propensity at electroplated copper-solder interface. J. Appl. Electrochem. 38, 1695–1705 (2008)CrossRefGoogle Scholar
  19. 19.
    L. Yin, F. Wafula, N. Dimitrov, P. Borgesen, Toward a better understanding of the effect of Cu electroplating process parameters on Cu3Sn voiding. J. Electron. Mater. 41, 302–312 (2012)CrossRefGoogle Scholar
  20. 20.
    C. Yu, Y. Yang, J. Chen, J. Xu, J. Chen, H. Lu, Effect of deposit thickness during electroplating on Kirkendall voiding at Sn/Cu joints. Mater. Lett. 128, 9–11 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Li, R. An, C. Wang, Y. Tian, Z. Jiang, Effect of Cu grain size on the voiding propensity at the interface of SnAgCu/Cu solder joints. Mater. Lett. 144, 97–99 (2015)CrossRefGoogle Scholar
  22. 22.
    P.T. Lee, Y.S. Wu, P.C. Lin, C.C. Chen, W.Z. Hsieh, C.E. Ho, High-speed Cu electrodeposition and its solderability. Surf. Coat. Technol. 320, 559–567 (2016)CrossRefGoogle Scholar
  23. 23.
    J.-Y. Park, W. Seo, S. Yoo, Y.-H. Kim, Effect of Cu electroplating parameters on microvoid formation and high-speed shear strength in Sn-3.0Ag-0.5Cu/Cu joints. J. Alloys Compd. 724, 492–500 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Meng, T. Takemoto, H. Nishikawa, Correlations between IMC thickness and three factors in Sn-3Ag-0.5Cu alloy system. Trans. Nonferrous Met. Soc. China 17, 686–690 (2007)CrossRefGoogle Scholar
  25. 25.
    X. Hu, Z. Ke, Growth behavior of interfacial Cu-Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging. J. Mater. Sci.: Mater. Electron. 25, 936–945 (2014)Google Scholar
  26. 26.
    X. Hu, X. Yu, Y. Li, Q. Huang, Y. Liu, Z. Min, Effect of strain rate on interfacial fracture behaviors of Sn-58Bi/Cu solder joints. J. Mater. Sci.: Mater. Electron. 25, 57–64 (2014)Google Scholar
  27. 27.
    X. Yu, X. Hu, Y. Li, T. Liu, R. Zhang, Z. Min, Tensile properties of Cu/Sn-58Bi/Cu soldered joints subjected to isothermal aging. J. Mater. Sci.: Mater. Electron. 25, 2416–2425 (2014)Google Scholar
  28. 28.
    F. Gao, T. Takemoto, H. Nishikawa, Effects of Co and Ni addition on reactive diffusion between Sn-3.5Ag solder and Cu during soldering and annealing. Mater. Sci. Eng. A 420, 39–46 (2006)CrossRefGoogle Scholar
  29. 29.
    D. Udler, D.N. Seidman, Grain boundary and surface energies of fcc metals. Phys. Rev. B 54, R11133–R11136 (1996)CrossRefGoogle Scholar
  30. 30.
    X. Hu, Y. Li, Z. Min, Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging. J. Alloys Compd. 582, 341–347 (2014)CrossRefGoogle Scholar
  31. 31.
    C.E. Ho, T.T. Kuo, C.C. Wang, W.H. Wu, Inhibiting the growth of Cu3Sn and Kirkendall voids in the Cu/Sn-Ag-Cu system by minor Pd alloying. Electron. Mater. Lett. 8, 495–501 (2012)CrossRefGoogle Scholar
  32. 32.
    Q. Li, Y.C. Chan, Growth kinetics of the Cu3Sn phase and void formation of sub-micrometre solder layers in Sn-Cu binary and Cu-Sn-Cu sandwich structures. J. Alloys Compd. 567, 47–53 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Yang, H. Lu, C. Yu, Y.Z. Li, Void formation at the interface in Sn/Cu solder joints. Microelectron. Reliab. 51, 2314–2318 (2011)CrossRefGoogle Scholar
  34. 34.
    Y.W. Wang, Y.W. Lin, C.R. Kao, Inhibiting the formation of microvoids in Cu3Sn by additions of Cu to solders. J. Alloys Compd. 493, 233–239 (2010)CrossRefGoogle Scholar
  35. 35.
    C.C. Chen, C.H. Hsieh, Y.W. Lee, C.H. Yang, C.E. Ho, Formation mechanism of pinholes in electroplated Cu films and its mitigation. Thin Solid Films 596, 209–215 (2015)CrossRefGoogle Scholar
  36. 36.
    S.S. Roy, R.M. Jacobberger, C. Wan, M.S. Arnold, Controlling the density of pinhole defects in monolayer graphene synthesized via chemical vapor deposition on copper. Carbon 100, 1–6 (2016)CrossRefGoogle Scholar
  37. 37.
    G. Yi, F. Cai, W. Peng, T. He, X. Yang, Y. Huang, Z. Yuan, P. Wang, Experimental analysis of pinholes on electrolytic copper foil and their prevention. Eng. Fail. Anal. 23, 76–81 (2012)CrossRefGoogle Scholar
  38. 38.
    K.M. Latt, K. Lee, T. Osipowicz, Y.K. Lee, Properties of electroplated copper thin film and its interfacial reactions in the EPCu/IMPCu/IMPTaN/SiO2/Si multilayer structure. Mater. Sci. Eng. B 83, 1–7 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yongqiang Wan
    • 1
  • Xiaoli Liu
    • 1
  • Xiaowu Hu
    • 1
  • Zhixian Min
    • 2
  • Guangbin Yi
    • 1
  • Xiongxin Jiang
    • 1
  • Yulong Li
    • 1
  1. 1.Key Lab for Robot & Welding Automation of Jiangxi Province, Mechanical & Electrical Engineering SchoolNanchang UniversityNanchangChina
  2. 2.China Electronics Technology Group Corporation, No. 38 Research InstituteHefeiChina

Personalised recommendations