Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18388–18396 | Cite as

Novel one-step fabrication of highly ordered Mo-doped TiO2 nanotubes arrays with enhanced visible light catalytic activity

  • Jie ZhouEmail author
  • Bo Feng
  • Xiong Lu
  • Ke Duan


Doping with transition metals has been established as a promising approach for extending the absorption spectrum of TiO2 to the visible light region for enhancing its photocatalytic (PC) activity under visible light illumination. In this work, highly ordered Mo-doped TiO2 nanotubes arrays (Mo-TNTs) were fabricated by a facile in situ anodization of Ti in ethylene glycol/fluoride electrolyte using sodium molybdate as the molybdenum source. The doping levels (0.13–1.51 at.%) of Mo were conveniently adjusted by varying the initial concentrations of sodium molybdate and ammonium fluoride in the electrolyte. Various characterizations were performed to investigate the morphologies, crystal phases, elements’ valence states of the as-prepared samples. Results indicated that Mo6+ ions were successfully introduced into the lattice of anatase TiO2, forming isostructural substitution of Ti4+. Compared with undoped TNTs, the Mo-TNTs exhibited the obvious extension of absorption spectra to the visible light region, higher photoelectric conversion efficiency and lower recombination of photogenerated carriers. Meanwhile, their photoelectrochemical properties were also significantly affected by the doping level of Mo. Of all samples, 6Mo-TNTs (0.82 at.% Mo) showed the best photoelectrochemical performance and highest PC activity under visible light. This was mainly attributed to the synergetic contributions of the enhanced visible light absorption and suppressed recombination.



This work is under the support of National Key Research and Development Program of China (2017YFB0702602), the National Natural Science Foundation of China (31570955) and the Fundamental Research Funds for the Central Universities (2682017CX075).


  1. 1.
    A.E. Ruby Mohamed, S. Rohani, Energy Environ. Sci. 4, 1065 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Liu, Z. Sun, Y. Zhang, L. Xu, N. Li, J. Phys. Chem. Solids 109, 64 (2017)CrossRefGoogle Scholar
  3. 3.
    Q. Ding, S. Chen, D. Chen, J. Liang, C. Liu, Surf. Interfaces 4, 35 (2016)CrossRefGoogle Scholar
  4. 4.
    C.B.D. Marien, T. Cottineau, D. Robert, P. Drogui, Appl. Catal. B: Environ. 194, 1 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Sun, Q. Zhao, G. Wang, K. Yan, J. Alloys Compd. 711, 514 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, L. Zhu, N. Ba, F. Gao, H. Xie, Mater. Res. Bull. 86, 268 (2017)CrossRefGoogle Scholar
  7. 7.
    C. Chen, L. Wang, F. Li, L. Ling, Mater. Chem. Phys. 146, 531 (2014)CrossRefGoogle Scholar
  8. 8.
    A.K. Ayal, Z. Zainal, H.-N. Lim, Z.A. Talib, Y.-C. Lim, S.-K. Chang, N.A. Samsudin, A.M. Holi, W.N.M. Amin, J. Mater. Sci.: Mater. Electron. 27, 5204 (2016)Google Scholar
  9. 9.
    J. Zhou, L. Yin, H. Li, Z. Liu, J. Wang, K. Duan, S. Qu, J. Weng, B. Feng, Mater. Sci. Semicond. Process. 40, 107 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Hua, X. Dong, X. Wang, M. Xue, X. Zhang, H. Ma, J. Nanomater. 2014, 943796 (2014). CrossRefGoogle Scholar
  11. 11.
    M.M. Momeni, Y. Ghayeb, J. Electroanal. Chem. 751, 43 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Ning, X. Wang, X. Yu, J. Li, J. Zhao, J. Alloys Compd. 658, 177 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Gong, W. Pu, C. Yang, J. Zhang, Electrochim. Acta 68, 178 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Motola, L. Satrapinskyy, M. Čaplovicová, T. Roch, M. Gregor, B. Grančič, J. Greguš, Ľ Čaplovič, G. Plesch, Appl. Surf. Sci. 434, 1257 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Ghayeb, M.M. Momeni, J. Mater. Sci.: Mater. Electron. 26, 5335 (2015)Google Scholar
  16. 16.
    S.-Y. Luo, B.-X. Yan, J. Shen, Thin Solid Films 522, 361 (2012)CrossRefGoogle Scholar
  17. 17.
    K. Tan, H. Zhang, C. Xie, H. Zheng, Y. Gu, W.F. Zhang, Catal. Commun. 11, 331 (2010)CrossRefGoogle Scholar
  18. 18.
    H. Liu, Z. Lu, l Yue, J. Liu, Z. Gan, C. Shu, T. Zhang, J. Shi, R. Xiong, Appl. Surf. Sci. 257, 9355 (2011)CrossRefGoogle Scholar
  19. 19.
    R. Bakhtchadjian, L.A. Manucharova, L.A. Tavadyan, Catal. Commun. 69, 193 (2015)CrossRefGoogle Scholar
  20. 20.
    Z. Zhe-Peng, Y. Biao, F. Hai-Bo, Z. Xin-Liang, Y. He-Bao, J. Phys. Chem. Solids 87, 53 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Liu, H. Gong, M. Zou, H. Jiang, R.S. Abolaji, A.K. Tareen, B.V. Hakala, M. Yang, Mater. Res. Bull. 96, 10 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Zhang, B. Yu, D. Wang, F. Zhou, J. Power Sources 281, 411 (2015)CrossRefGoogle Scholar
  23. 23.
    D. Guan, X. Gao, J. Li, C. Yuan, Appl. Surf. Sci. 300, 165 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Sado, T. Ueda, K. Ueda, T. Narushima, Appl. Surf. Sci. 357, 2198 (2015)CrossRefGoogle Scholar
  25. 25.
    I. Ali, S.-R. Kim, S.-P. Kim, J.-O. Kim, Catal. Today 282, 31–37 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Gong, W. Pu, C. Yang, J. Zhang, Catal. Commun. 36, 89–93 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Umar, M.M. Haque, M. Muneer, T. Harada, M. Matsumura, J. Alloys Compd. 578, 431 (2013)CrossRefGoogle Scholar
  28. 28.
    T.V. Thi, A.K. Rai, J. Gim, S. Kim, J. Kim, J. Alloys Compd. 598, 16 (2014)CrossRefGoogle Scholar
  29. 29.
    V. Štengl, S. Bakardjieva, J. Phys. Chem. C 114, 19308 (2010)CrossRefGoogle Scholar
  30. 30.
    B. Houng, C.C. Liu, M.T. Hung, Ceram. Int. 39, 3669 (2013)CrossRefGoogle Scholar
  31. 31.
    D. Guan, J. Li, X. Gao, C. Yuan, J. Power Sources 246, 305 (2014)CrossRefGoogle Scholar
  32. 32.
    M. Nasr, A. Abou Chaaya, N. Abboud, M. Bechelany, R. Viter, C. Eid, A. Khoury, P. Miele, Superlattices Microstruct. 77, 18 (2015)CrossRefGoogle Scholar
  33. 33.
    S. Husain, L.A. Alkhtaby, E. Giorgetti, A. Zoppi, M. Muniz Miranda, J. Lumin. 172, 258 (2016)CrossRefGoogle Scholar
  34. 34.
    C.W. Lai, S. Sreekantan, Micro Nano Lett. 7, 443 (2012)CrossRefGoogle Scholar
  35. 35.
    X. Yu, J. Yu, B. Cheng, M. Jaroniec, J. Phys. Chem. C 113, 17527 (2009)CrossRefGoogle Scholar
  36. 36.
    J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J.C. Yu, W.-K. Ho, J. Phys. Chem. B 107, 13871 (2003)CrossRefGoogle Scholar
  37. 37.
    J. Ng, S. Xu, X. Zhang, H.Y. Yang, D.D. Sun, Adv. Funct. Mater. 20, 4287 (2010)CrossRefGoogle Scholar
  38. 38.
    A.G. Muñoz, Q. Chen, P. Schmuki, J. Solid State Electrochem. 11, 1077 (2006)CrossRefGoogle Scholar
  39. 39.
    U.H. Shah, K.M. Deen, H. Asgar, Z. Rahman, W. Haider, J. Electroanal. Chem. 807, 228 (2017)CrossRefGoogle Scholar
  40. 40.
    Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, J. Mater. Sci.: Mater. Electron. 28, 2923 (2016)Google Scholar
  41. 41.
    Y.K. Abdel-Monem, J. Mater. Sci.: Mater. Electron. 27, 5723 (2016)Google Scholar
  42. 42.
    H. Li, J. Zhou, X. Zhang, K. Zhou, S. Qu, J. Wang, X. Lu, J. Weng, B. Feng, J. Mater. Sci.: Mater. Electron. 26, 2571 (2015)Google Scholar
  43. 43.
    Q. Li, J.K. Shang, Environ. Sci. Technol. 43, 8923 (2009)CrossRefGoogle Scholar
  44. 44.
    X. Cheng, X. Yu, B. Li, L. Yan, Z. Xing, J. Li, Mater. Sci. Eng. B 178, 425 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduPeople’s Republic of China

Personalised recommendations