Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18380–18387 | Cite as

A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature

  • Haixin Liu
  • Wenhao Shen
  • Xiaoquan Chen
  • Jean-Pierre Corriou
Article
  • 81 Downloads

Abstract

Nanometer sized aggregates of titanium dioxide quantum dot clusters (QDs) were used with a convenient low temperature (80 °C) hydrolysis method to prepare a high performance NH3 gas sensor. Using transmission electron microscopy, the synthesized material was found to consist of massive anatase TiO2 QDs (66 nm) with excellent stability and dispersibility (the individual QDs were formed from 2 to 5 nm diameter anatase crystals). The unique preparation method yielded a highly porous TiO2 QDs structure with a huge specific surface area (315.74 m2/g). This provides more potential reaction sites on the surface potential enhancing the performance of the sensor. Testing revealed these NH3 (g) sensors demonstrated excellent gas sensing properties (0.2–10 ppm, room temperature), high sensitivity, selectivity, stability, low detection limit (0.2 ppm), rapid response recovery (88 s/23 s for 0.2 ppm), and a linear response to concentration.

Notes

Acknowledgements

The research was supported by the Research Funds of National Science Foundation of Guangdong, China (No. 2016A030313478), Science and Technology Planning Project of Guangdong, China (No. 2015A020215012), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology (No. 2015C05), and Science and Technology Program of Guangzhou, China (No. 201607010050).

References

  1. 1.
    R.E.D.L. Hoz, D.P. Schlueter, W.N. Rom, Am. J. Ind. Med. 29, 209 (1996)CrossRefGoogle Scholar
  2. 2.
    R.W. Pinder, A.B. Gilliland, R.L. Dennis, Geophys. Res. Lett. 35, 82 (2008)CrossRefGoogle Scholar
  3. 3.
    J.W. Erisman, R. Otjes, A. Hensen et al., Atmos. Environ. 35, 1913 (2001)CrossRefGoogle Scholar
  4. 4.
    T.D. Durbin, R.D. Wilson, J.M. Norbeck, J.W. Miller, H. Tao, S.H. Rhee, Atmos. Environ. 36, 1475 (2002)CrossRefGoogle Scholar
  5. 5.
    Y.L. Tang, Z.J. Li, J.Y. Ma, Y.J. Guo, Y.Q. Fu, X.T. Zu, Sens. Actuators B 201, 114 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.L. Tang, Z.J. Li, J.Y. Ma et al., J. Hazard. Mater. 280, 127 (2014)CrossRefGoogle Scholar
  7. 7.
    S.Y. Wang, J.Y. Ma, Z.J. Li et al., J. Hazard. Mater. 285, 368 (2015)CrossRefGoogle Scholar
  8. 8.
    W. Ament, J.R. Huizenga, E. Kort, V.D.M. Tw, R.G. Grevink, G.J. Verkerke, Int. J. Sports Med. 20, 71 (1999)CrossRefGoogle Scholar
  9. 9.
    Y. Zeng, Z. Lou, L. Wang et al., Sens Actuators B 156, 395 (2011)CrossRefGoogle Scholar
  10. 10.
    G.N. Dar, A. Umar, S.A. Zaidi et al., Talanta 89, 155 (2012)CrossRefGoogle Scholar
  11. 11.
    C.N. Xu, N. Miura, Y. Ishida, K. Matsuda, N. Yamazoe, Sens. Actuators B 65, 163 (2000)CrossRefGoogle Scholar
  12. 12.
    C. Li, D. Zhang, B. Lei, S. Han, A. Xiaolei Liu, C. Zhou, J. Phys. Chem. B 107, 12451 (2003)CrossRefGoogle Scholar
  13. 13.
    P. Guo, H. Pan, P. Guo, H. Pan, Sens. Actuators B 114, 762 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Satsuma, K.I. Shimizu, T. Hattori et al., Sens. Actuators B 123, 757 (2007)CrossRefGoogle Scholar
  15. 15.
    V. Modafferi, G. Panzera, A. Donato et al., Sens. Actuators B 163, 61 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Huang, J. Wang, C. Gu, K. Yu, F. Meng, J. Liu, Sens. Actuators A 150, 218 (2009)CrossRefGoogle Scholar
  17. 17.
    E. Bekyarova, M. Davis, T. Burch et al., J. Phys. Chem. B 108, 19717 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Abaker, A. Umar, S. Baskoutas et al., J. Phys. D 44, 425401 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Deng, R. Zhang, L. Wang, Z. Lou, T. Zhang, Sens. Actuators B 209, 449 (2015)CrossRefGoogle Scholar
  20. 20.
    E. Comini, V. Galstyan, G. Faglia, E. Bontempi, G. Sberveglieri, Microporous Mesoporous Mater. 208, 165 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Yamazoe, Sens. Actuators B 108, 2 (2005)CrossRefGoogle Scholar
  22. 22.
    L. Wang, J. Deng, Z. Lou, T. Zhang, J. Mater. Chem. A 2, 10022 (2014)CrossRefGoogle Scholar
  23. 23.
    L. Wang, H. Dou, Z. Lou, T. Zhang, Nanoscale 5, 2686 (2013)CrossRefGoogle Scholar
  24. 24.
    L.L. Wang, T. Fei, Z. Lou, T. Zhang, ACS Appl. Mater. Interfaces 3, 4689 (2011)CrossRefGoogle Scholar
  25. 25.
    L.C. Jiang, W.D. Zhang, Electroanalysis 21, 988 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Nikfarjam, N. Salehifar, Sens. Actuators B 211, 146 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Zhang, E. Strelcov, A. Kolmakov (2015). arXiv:1501.01877v1
  28. 28.
    W.T. Kim, I.H. Kim, W.Y. Choi, J. Nanosci. Nanotechnol. 15, 8161 ​(2015)CrossRefGoogle Scholar
  29. 29.
    Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Adv. Mater. 27, 2557 (2015)CrossRefGoogle Scholar
  30. 30.
    U.V. Patil, N.S. Ramgir, A.K. Debnath, et al., Am. Inst. Phys. Conf. Ser.Google Scholar
  31. 31.
    X. Chen, G. Gu, H. Liu, Z. Cao, J. Am. Ceram. Soc. 87, 1035 (2004)CrossRefGoogle Scholar
  32. 32.
    C.L. Wang, W.S. Hwang, H.L. Chu, H.J. Lin, H.H. Ko, M.C. Wang, Ceram. Int. 42, 13136 (2016)CrossRefGoogle Scholar
  33. 33.
    Z. Jing, J. Zhan, Adv. Mater. 20, 4547 (2008)CrossRefGoogle Scholar
  34. 34.
    N. Rezlescu, C. Doroftei, E. Rezlescu, M. Craus, Romanian Rep. Phys. 60, 1041 (2008)Google Scholar
  35. 35.
    A.I. Uddin, D.-T. Phan, G.-S. Chung, Sens. Actuators B 207, 362 (2015)CrossRefGoogle Scholar
  36. 36.
    C. Cannilla, G. Bonura, F. Frusteri, D. Spadaro, S. Trocino, G. Neri, J. Mater. Chem. C 2, 5778 (2014)CrossRefGoogle Scholar
  37. 37.
    N.D. Cuong, K.Q. Trung, T.D. Nguyen et al. (2018) J. Alloys Compds. 735, 787–794CrossRefGoogle Scholar
  38. 38.
    Y. Wang, J. Liu, X. Cui et al., Sens. Actuators B 238, 473–481 (2017)CrossRefGoogle Scholar
  39. 39.
    N. Van Toan, C.M. Hung, N. Van Duy et al., Mater. Sci. Eng. B 224, 163–170 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Haixin Liu
    • 1
  • Wenhao Shen
    • 1
  • Xiaoquan Chen
    • 1
  • Jean-Pierre Corriou
    • 2
  1. 1.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Laboratoire Réactions et Génie des Procédés, UMR 7274-CNRS, Lorraine University, ENSICNANCY CedexFrance

Personalised recommendations