Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18331–18342 | Cite as

Electrochemical migration of nano-sized Ag interconnects under deionized water and Cl-containing electrolyte

  • Wan-Hsuan Lin
  • Chia-Hung Tsou
  • Fan-Yi OuyangEmail author


With the trend of miniaturization of electronic products, the applications of fine-pitch interconnect have extended in high performance intelligent electronic devices. Thus, electrochemical migration (ECM) would be a concern in fine-pitch scale interconnects under the environment of temperature, humidity and biased voltage. This study investigated ECM behavior of fine-pitch nano-sized Ag interconnects prepared by screen-printing and sputtering methods in deionized water and Cl-containing electrolytes. The ECM induced short-circuit was caused by dendrite formation between the cathode and anode. The ECM time to short circuit decreased with reducing pitch size for both samples but the sputtered samples exhibited better ECM resistance than printed ones due to continuous and consolidated structures of sputtered interconnects. In addition, different microstructure evolution of interconnects were found in different electrolytes and corresponding ion transport mechanism during ECM was discussed. When Cl-containing electrolyte with concentration higher than 554 ppm was introduced, no more dendrite formation between the Ag interconnects was found and the ECM of Ag was suppressed. Instead, AgCl particles were formed at anode of interconnects and continued to grow accompanying with consumption of Ag interconnects, finally leading to open-circuit failure.



We thank National Tsing Hua University/ Industrial Technology Research Institute Joint Research Center, Taiwan, for financial support under Contract No. 104-B-01-D101W3H03F and Ministry of Science and Technology of Taiwan, R.O.C., for financial support under contract No. 105-2221-E-007-024-MY3.


  1. 1.
    K.-S. Kim, W.-R. Myung, S.-B. Jung, Electron. Mater. Lett. 8, 309 (2012)CrossRefGoogle Scholar
  2. 2.
    H. Shin, H. Lee, H. Yoo, K.S. Lim, M. Lee, Korean J. Metals Mater. 48, 163 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Biswas, H. Eilers, F.H. Jr., O.C. Aktas, C.V.S. Kiran, Appl. Phys. Lett. 88, 013103 (2006)CrossRefGoogle Scholar
  4. 4.
    Y. Sun, Y. Xia, Adv. Mater. 14, 833 (2002)CrossRefGoogle Scholar
  5. 5.
    Y. Li, K. Moon, C.P. Wong, Science 308, 1419 (2005)CrossRefGoogle Scholar
  6. 6.
    M.E. Calderón-Jiménez, A.R.M. Johnson, K.E. Bustos, M.R. Murphy, J.R.V. Winchester, B. Baudrit, Front. Chem. 5, 6 (2017)CrossRefGoogle Scholar
  7. 7.
    J.C. Lin, J.Y. Chan, Mater. Chem. Phys. 43, 256 (1996)CrossRefGoogle Scholar
  8. 8.
    B. Medgyes, B. Illés, G. Harsányi, J. Mater. Sci. Mater. Electron. 23, 551 (2012)CrossRefGoogle Scholar
  9. 9.
    G. Harsanyi, IEEE Trans. Compon. Packag. Manuf. Technol. A 18, 602 (1995)CrossRefGoogle Scholar
  10. 10.
    S. Yang, J. Wu, A. Christou, Microelectron. Reliab. 46, 1915 (2006)CrossRefGoogle Scholar
  11. 11.
    K.-S. Kim, J.-H. Ahn, B.-I. Noh, S.-B. Jung, J. Nanosci. Nanotechnol. 12, 3219 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Harsányi, G. Inzelt, Microelectron. Reliab. 41, 229 (2001)CrossRefGoogle Scholar
  13. 13.
    K.-S. Kim, K.-H. Jung, B.-G. Park, Y.-E. Shin, S.-B. Jung, J. Nanosci. Nanotechnol. 13, 7620 (2013)CrossRefGoogle Scholar
  14. 14.
    B.-I. Noh, J.-W. Yoon, K.-S. Kim, S. Kang, S.-B. Jung, Microelectron. Eng. 103, 1 (2013)CrossRefGoogle Scholar
  15. 15.
    G.-Q. Lu, C. Yan, Y. Mei, X. Li, Mater. Chem. Phys. 151, 18 (2015)CrossRefGoogle Scholar
  16. 16.
    J.J.-D. Gu, T. Ford, R. Mitchell, Uhlig’s Corrosion Handbook, 3rd edn. (Wiley, New York, pp. 549 (2011)CrossRefGoogle Scholar
  17. 17.
    Q. Chu, W. Wang, J. Liang, J. Hao, Z. Zhen, Mater. Chem. Phys. 142, 539 (2013)CrossRefGoogle Scholar
  18. 18.
    M.A. Rodríguez, R.M. Carranza, J. Electrochem. Soc. 158, C221 (2011)CrossRefGoogle Scholar
  19. 19.
    D.O. Flamini, S.B. Saidman, Mater. Chem. Phys. 136, 103 (2012)CrossRefGoogle Scholar
  20. 20.
    X. Zhong, G. Zhang, Y. Qiu, Z. Chen, W. Zou, X. Guo, Electrochem. Commun. 27, 63 (2013)CrossRefGoogle Scholar
  21. 21.
    B. Medgyes, X. Zhong, G. Harsányi, J. Mater. Sci. Mater. Electron. 26, 2010 (2015)CrossRefGoogle Scholar
  22. 22.
    B. Medgyes, B. Illés, G. Harsányi, J. Mater. Sci. Mater. Electron. 24, 2315 (2013)CrossRefGoogle Scholar
  23. 23.
    X. Zhong, S. Yu, L. Chen, J. Hu, Z. Zhang, J. Mater. Sci. Mater. Electron. 28, 2279 (2017)CrossRefGoogle Scholar
  24. 24.
    C.-H. Tsou, K.-N. Liu, H.-T. Lin, F.-Y. Ouyang, J. Electron. Mater. 45, 6123 (2016)CrossRefGoogle Scholar
  25. 25.
    G.Q. Lu, W. Yang, Y.H. Mei, X. Li, G. Chen, X. Chen, Trans. Device Mater. Reliab. 14, 311 (2014)CrossRefGoogle Scholar
  26. 26.
    A.A. Rakesh, H. Yasuhiko, S. Tetsuo, J. Phys. D 42, 042002 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Förch, H. Schönherr, A. Jenkins, Surface Design: Applications in Bioscience and Nanotechnology (Wiley, New York, 2009), pp. 471–473Google Scholar
  28. 28.
    G. DiGiacomo, in 20th International Reliability Physics Symposium (IRPS) IEEE (1982), pp. 27–33Google Scholar
  29. 29.
    Z. Lou, B. Huang, Z. Wang, X. Qin, X. Zhang, Y. Liu, R. Zhang, Y. Dai, M.-H. Whangbo, Dalton Trans. 42, 15219 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Luidold, H. Antrekowitsch, JOM 59, 20 (2007)CrossRefGoogle Scholar
  31. 31.
    F. Pargar, H. Kolev, D.A. Koleva, K. van Breugel, J. Mater. Sci. 53, 7527 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Ha, J. Payer, Electrochim. Acta 56, 2781 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations