Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18320–18330 | Cite as

Phase controllable synthesis of NaMgF3:Yb3+, Er3+ nanocrystals with effective red upconversion luminescence

  • Jue Wang
  • Jing Zhang
  • Jinhui Xie
  • Yaoyao Li
  • Lixi Wang
  • Qitu ZhangEmail author


Synthesizing and controlling lanthanide ions doped upconversion luminescent nanocrystals with effective emission have been researched to satisfy the demand for different applications. In this work, the influence of reaction conditions on crystal composition and upconversion luminescence properties of NaMgF3:Yb3+, Er3+ nanocrystals have been explored with XRD and upconversion emission spectra. The experimental results demonstrate that lanthanide ions concentration has great impact on the growth of samples, i.e., a low concentration leads to cube NaMgF3 nanocrystals, while a high concentration facilitates impurity NaYbF4 microtube. Adjusting reaction parameters is also crucial for controlling NaMgF3 crystal structure by shortening reaction time and reducing reaction temperature. In addition, the well-dispersed NaMgF3:Yb3+, Er3+ nanocrystals with different red-to-green ratios have been achieved successfully by changing the reaction parameters, resulting in the upconversion luminescence from orange to red, and the single-band red UC luminescence can be observed in NaMgF3:0.5Yb3+, 0.5Er3+ nanocrystals. This study explains the formation mechanism of NaMgF3:Yb3+, Er3+ nanocrystals and gains the effective red luminescence, which may be helpful to synthesize other similar upconversion nanocrystals in colour display, bioimaging and so on.



This work is supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Project No. SKL201309SIC), as well as the College Industrialization Project of Jiangsu Province (JHB2012-12) and the Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, the Science and Technology Projects of Guangdong Province (Project No. 2011A091103002).


  1. 1.
    L. Wondraczek, E. Tyystjarvi, J. Mendez-Ramos, F.A. Muller, Q. Zhang, Shifting the sun: solar spectral conversion and extrinsic sensitization in natural and artificial photosynthesis. Adv. Sci. (Weinh) 2, 1500218 (2015)CrossRefGoogle Scholar
  2. 2.
    M.K. Tsang, G. Bai, J. Hao, Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 44, 1585–1607 (2015)CrossRefGoogle Scholar
  3. 3.
    G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Agren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)CrossRefGoogle Scholar
  4. 4.
    G. Chen, T.Y. Ohulchanskyy, W.C. Law, H. Agren, P.N. Prasad, Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 3, 2003–2008 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Liu, M.K. Jayakumar, K. Huang, Z. Wang, X. Zheng, H. Agren, Y. Zhang, Phase angle encoded upconversion luminescent nanocrystals for multiplexing applications. Nanoscale 9, 1676–1686 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015)CrossRefGoogle Scholar
  7. 7.
    G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotech. 10, 237 (2015)CrossRefGoogle Scholar
  9. 9.
    X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42, 173–201 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Ding, X. Teng, H. Zhu, L. Wang, W. Pei, J.J. Zhu, L. Huang, W. Huang, Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission. Nanoscale 5, 11928–11932 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Chen, J.X. Zhao, Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors (Basel) 12, 2414–2435 (2012)CrossRefGoogle Scholar
  12. 12.
    V.D.E. Bm, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Cheminform 11, 11081 (2009)Google Scholar
  13. 13.
    F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Cheminform 35, 139 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, H. Zhang, C. Synthesis, Formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level. J. Phys. Chem. B 112, 15666–15672 (2008)CrossRefGoogle Scholar
  15. 15.
    J.H. Zeng, T. Xie, Z.H. Li, Y.D. Li, Monodispersed nanocrystalline fluoroperovskite up-conversion phosphors. Cryst. Growth Des. 7, 2774–2777 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Wu, E.H. Song, Z.T. Chen, S. Ding, S. Ye, J.J. Zhou, S.Q. Xu, Q.Y. Zhang, Single-band red upconversion luminescence of Yb3+–Er3+ via nonequivalent substitution in perovskite KMgF3 nanocrystals. J. Mater. Chem. C 4, 1675–1684 (2016)CrossRefGoogle Scholar
  17. 17.
    E. Song, S. Ding, M. Wu, S. Ye, F. Xiao, G. Dong, Q. Zhang, Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3+,Mn2+. J. Mater. Chem. C 1, 4209 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Wu, X.F. Jiang, E.H. Song, J. Su, Z.T. Chen, W.B. Dai, S. Ye, Q.Y. Zhang, Tailoring the upconversion of ABF3:Yb3+/Er3+ through Mn2+ doping. J. Mater. Chem. C 4, 9598–9607 (2016)CrossRefGoogle Scholar
  19. 19.
    E. Song, Z. Chen, M. Wu, S. Ding, S. Ye, S. Zhou, Q. Zhang, Room-temperature wavelength-tunable single-band upconversion luminescence from Yb3+/Mn2+ codoped fluoride perovskites ABF3. Adv. Opt. Mater. 4, 798–806 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)CrossRefGoogle Scholar
  21. 21.
    V. Pischedda, G. Ferraris, G. Raade, Single-crystal X-ray diffraction study on neighborite (NaMgF3) from Gjerdingselva, Norway, Neues Jahrbuch für Mineralogie—Abhandlungen. J. Mineral. Geochem. 182, 23–29 (2005)Google Scholar
  22. 22.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  23. 23.
    S. Zeng, Z. Yi, W. Lu, C. Qian, H. Wang, L. Rao, T. Zeng, H. Liu, H. Liu, B. Fei, J. Hao, Simultaneous realization of phase/size manipulation, upconversion luminescence enhancement, and blood vessel imaging in multifunctional nanoprobes through transition metal Mn2+ doping. Adv. Funct. Mater. 24, 4051–4059 (2014)CrossRefGoogle Scholar
  24. 24.
    D. Chen, Y. Yu, F. Huang, P. Huang, A. Yang, Y. Wang, Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J. Am. Chem. Soc. 132, 9976–9978 (2010)CrossRefGoogle Scholar
  25. 25.
    B. Lütgert, D. Babel, Kristallstrukturverfeinerungen an Natriumtrifluorometallaten NaMF3 (M = Mg, Co, Ni, Zn): Oktaederkippung und Toleranzfaktor orthorhombischer Fluorperowskite. Z. Anorg. Chem. 616, 133–140 (1992)CrossRefGoogle Scholar
  26. 26.
    V.M. Goldschmidt, Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926)CrossRefGoogle Scholar
  27. 27.
    C. Randall, A. Bhalla, T. Shrout, L. Cross, Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order. J. Mater. Res. 5, 829–834 (1990)CrossRefGoogle Scholar
  28. 28.
    G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem Sci. 5, 4712–4715 (2014)CrossRefGoogle Scholar
  29. 29.
    X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian, J. Lin, Solvothermal synthesis of well-dispersed NaMgF3 nanocrystals and their optical properties. J. Colloid Interface Sci. 329, 103–106 (2009)CrossRefGoogle Scholar
  30. 30.
    F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Zeng, G. Ren, C. Xu, Q. Yang, Modifying crystal phase, shape, size, optical and magnetic properties of monodispersed multifunctional NaYbF4 nanocrystals through lanthanide doping. CrystEngComm 13, 4276 (2011)CrossRefGoogle Scholar
  32. 32.
    S.M. Lee, S.N. Cho, J. Cheon, Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 15, 441–444 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Zeng, G. Ren, C. Xu, Q. Yang, High uniformity and monodispersity of sodium rare-earth fluoride nanocrystals: controllable synthesis, shape evolution and optical properties. CrystEngComm 13, 1384–1390 (2011)CrossRefGoogle Scholar
  34. 34.
    W. Qin, Z. Liu, C. Sin, C. Wu, G. Qin, Z. Chen, K. Zheng, Multi-ion cooperative processes in Yb3+ clusters. Light Sci. Appl. 3, e193–e193 (2014)CrossRefGoogle Scholar
  35. 35.
    B.M. van der Ende, L. Aarts, A. Meijerink, Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009)CrossRefGoogle Scholar
  36. 36.
    W.B. Pei, B. Chen, L. Wang, J. Wu, X. Teng, R. Lau, L. Huang, W. Huang, NaF-mediated controlled-synthesis of multicolor Na(x)ScF(3+x):Yb/Er upconversion nanocrystals. Nanoscale 7, 4048–4054 (2015)CrossRefGoogle Scholar
  37. 37.
    M. Pang, X. Zhai, J. Feng, S. Song, R. Deng, Z. Wang, S. Yao, X. Ge, H. Zhang, One-step synthesis of water-soluble hexagonal NaScF4:Yb/Er nanocrystals with intense red emission. Dalton Trans. 43, 10202–10207 (2014)CrossRefGoogle Scholar
  38. 38.
    D. Chen, L. Lei, R. Zhang, A. Yang, J. Xu, Y. Wang, Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem. Commun. (Camb) 48, 10630–10632 (2012)CrossRefGoogle Scholar
  39. 39.
    F. Vetrone, J. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J. Appl. Phys. 96, 661–667 (2004)CrossRefGoogle Scholar
  40. 40.
    S. Zeng, G. Ren, Q. Yang, Fabrication, formation mechanism and optical properties of novel single-crystal Er3+ doped NaYbF4 micro-tubes. J. Mater. Chem. 20, 2152 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jue Wang
    • 1
    • 2
  • Jing Zhang
    • 3
  • Jinhui Xie
    • 1
    • 2
  • Yaoyao Li
    • 1
    • 2
  • Lixi Wang
    • 1
    • 2
  • Qitu Zhang
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjing Tech UniversityNanjingChina
  3. 3.China Geological SurveyNanjing CenterNanjingChina

Personalised recommendations