Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18238–18248 | Cite as

Hydrothermal synthesis of MoS2/CC composite with enhanced photo-degradation activity and easy recycle property

  • Cheng Liu
  • Zhiyong ZhangEmail author
  • Rui Qu


Molybdenum sulfide (MoS2) has become popular in the photo-degradation of organic pollutants because of its strong visible light response and environment-friendly nature. Recycling the catalyst and the high recombination of photo-generated carriers remain problematic, hindering its practical application. In this work, MoS2 nanosheets were vertically grown on carbon cloth (CC) (MoS2/CC) via the one-step hydrothermal route. The built-in electric field at the MoS2/CC heterogeneous interface could effectively separate the photon-generated electrons and holes, while prolonging the lifetime of the photon-generated carriers. XRD and XPS show that the pristine MoS2 naonosheets were successfully grown on the CC. SEM and TEM demonstrated that the as-prepared MoS2/CC composite exposed as many of the lateral edges of MoS2 as possible. The lateral edges were the main active sites. The UV–Vis diffuse reflectance spectrum showed that the absorption intensity of as-prepared MoS2/CC composite was higher than the pristine MoS2 in the visible light region. The photo-degradation experiments confirmed that the photo-catalytic activity of the as-prepared MoS2/CC composition is higher than pristine MoS2. The circulation photo-degradation experiments further confirmed that the as-prepared MoS2/CC composite could be easily and rapidly recycled from solution after the practical application. The as-prepared MoS2/CC composite maintained a high photo-degradation activity after being used several times, which signified it fit for reusing and avoided second pollution.



The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 61405159), the Key Project of Natural Science Foundation of Shaanxi Province (Grant No. 2014JZ2-003), Special scientific Research Project of Education Department of Shaanxi Province (Grant No. 17JK0756), and the Program for International Science and Technology Cooperation Projects of Shaanxi Province (Grant No. 2018KWZ-08).


  1. 1.
    C. Liu, D. Kong, P.C. Hsu, H. Yuan, H.W. Lee, Y. Liu, H. Wang et al., Nat. Nanotechnol. 11, 1098–1104 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Avetta, F. Bella, A.B. Prevot, E. Laurenti, E. Montoneri, A. Arques, L. Carlos, ACS Sustain. Chem. Eng. 1, 1545–1550 (2013)CrossRefGoogle Scholar
  3. 3.
    G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S. Kim, J. Alloys Compd. 682, 208–215 (2016)CrossRefGoogle Scholar
  4. 4.
    D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Nat. Nanotechnol. 11, 218–230 (2016)CrossRefGoogle Scholar
  5. 5.
    E. Butanovs, A. Kuzmin, J. Butikova, S. Vlassov, B. Polyakov, J. Cryst. Growth 459, 100–104 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Lan, L. Liu, R. Li, Z. Leng, S. Gan, Ind. Eng. Chem. Res. 53, 3131–3139 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, D. Pai et al., Compos. B 57, 105–111 (2014)CrossRefGoogle Scholar
  8. 8.
    Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo et al., Catal. Today 264, 250–256 (2016)CrossRefGoogle Scholar
  9. 9.
    Y.T.C. Ratanatawanate, K.J. Balkus Jr., J. Phys. Chem. C 113, 10755–10760 (2009)CrossRefGoogle Scholar
  10. 10.
    S. Cravanzola, L. Muscuso, F. Cesano, G. Agostini, A. Damin, D. Scarano, A. Zecchina, Langmuir 31, 5469–5478 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Guo, K. Yu, H. Li, H. Song, Y. Zhang, X. Lei, H. Fu et al., ACS Appl. Mater. Interfaces 8, 5517–5525 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Ji, Z. Yang, C. Zhang, Z. Liu, W.W. Tjiu, I.Y. Phang, Z. Zhang et al., Electrochim. Acta 109, 269–275 (2013)CrossRefGoogle Scholar
  13. 13.
    H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim et al., Nano Lett. 12, 3695–3700 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Lin, J. Wang, L. Guo, F. Fu, J. Phys. Chem. C 119, 13658–13664 (2015)CrossRefGoogle Scholar
  15. 15.
    X.L. Yin, L.L. Li, W.J. Jiang, Y. Zhang, X. Zhang, L.J. Wan, J.S. Hu, ACS Appl. Mater. Interfaces 8, 15258–15266 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.M.K. Chang, T. Wang, Q. Kang, S. Ouyang, J. Ye, ACS Nano 8, 7078–7087 (2014)CrossRefGoogle Scholar
  17. 17.
    J.D. Benck, Z. Chen, L.Y. Kuritzky, A.J. Forman, T.F. Jaramillo, ACS Catal. 2, 1916–1923 (2012)CrossRefGoogle Scholar
  18. 18.
    X. Zhang, X. Huang, M. Xue, X. Ye, W. Lei, H. Tang, C. Li, Mater. Lett. 148, 67–70 (2015)CrossRefGoogle Scholar
  19. 19.
    Z. Zhou, Y. Lin, P. Zhang, E. Ashalley, M. Shafa, H. Li, J. Wu et al., Mater. Lett. 131, 122–124 (2014)CrossRefGoogle Scholar
  20. 20.
    W.-J. Li, E.-W. Shi, J.-M. Ko, Z. Chen, H. Ogino, T. Fukuda, J. Cryst. Growth 250, 418–422 (2003)CrossRefGoogle Scholar
  21. 21.
    H. Lin, X. Chen, H. Li, M. Yang, Y. Qi, Mater. Lett. 64, 1748–1750 (2010)CrossRefGoogle Scholar
  22. 22.
    Q. Li, N. Zhang, Y. Yang, G. Wang, D.H.L. Ng, Langmuir 30, 8965–8972 (2014)CrossRefGoogle Scholar
  23. 23.
    S.V.P. Vattikuti, C. Byon, Superlatt. Microstruct. 10, 1–12 (2016)Google Scholar
  24. 24.
    X. Zhang, C. Shao, X. Li, F. Miao, K. Wang, N. Lu, Y. Liu, J. Alloys Compd. 686, 137–144 (2016)CrossRefGoogle Scholar
  25. 25.
    C. Wang, A.-W. Wang, J. Feng, Z. Li, B. Chen, Q.-H. Wu, J. Jiang et al., Ceram. Int. 2016, 1–5 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Xiong, J. Zhu, X. Wang, Ind. Eng. Chem. Res. 52, 17126–17133 (2013)CrossRefGoogle Scholar
  27. 27.
    Z. Li, W. Zhang, Q. Zhao, H. Gu, Y. Li, G. Zhang, F. Zhang et al., ACS Sustain. Chem. Eng. 3, 468–474 (2015)CrossRefGoogle Scholar
  28. 28.
    B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 12, 3005–3011 (2012)CrossRefGoogle Scholar
  29. 29.
    X. Wei, W. Li, J.A. Shi, L. Gu, Y. Yu, ACS Appl. Mater Interfaces 7, 27804–27809 (2015)CrossRefGoogle Scholar
  30. 30.
    X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, ACS Sustain. Chem. Eng 4, 4055–4063 (2016)CrossRefGoogle Scholar
  31. 31.
    V.O. Koroteev, L.G. Bulusheva, I.P. Asanov, E.V. Shlyakhova, D.V. Vyalikh, A.V. Okotrub, J. Phys. Chem. C 115, 21199–21204 (2011)CrossRefGoogle Scholar
  32. 32.
    J. Zhang, L. Huang, Z. Lu, Z. Jin, X. Wang, G. Xu, E. Zhang et al., J. Alloys Compd. 688, 840–848 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Zhu, F. Lyu, M. Du, M. Zhang, Q. Wang, J. Yao, B. Guo, ACS Appl. Mater Interfaces 6, 22126–22137 (2014)CrossRefGoogle Scholar
  34. 34.
    Z. Wang, B. Mi, Environ. Sci. Technol. 51, 8229–8244 (2017)CrossRefGoogle Scholar
  35. 35.
    F. Xiong, Z. Cai, L. Qu, P. Zhang, Z. Yuan, O.K. Asare, W. Xu et al., ACS Appl. Mater. Interfaces 7, 12625–12630 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Duch, P. Kubisiak, K.H. Adolfsson, M. Hakkarainen, M. Golda-Cepa, A. Kotarba, Appl. Surf. Sci. 419, 439–446 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Small 11, 2305–2313 (2015)CrossRefGoogle Scholar
  38. 38.
    P. Zhou, X. Song, X. Yan, C. Liu, L. Chen, Q. Sun, D.W. Zhang, Nanotechnology 27, 344002 (2016)CrossRefGoogle Scholar
  39. 39.
    P.D.A. Goswamia, S. Palb, F. Khana, Ž Antića, R. Gaikwada, K. Prashanthia, T. Thundata, Nano Res. 10, 3571–3584 (2017)CrossRefGoogle Scholar
  40. 40.
    S.Y. Lee, U.J. Kim, J. Chung, H. Nam, H.Y. Jeong, G.H. Han, H. Kim et al., ACS Nano 10, 6100–6107 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information and TechnologyNorthwest UniversityXi’anChina

Personalised recommendations