Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18231–18237 | Cite as

Novel amorphous nanowires from solution processed Ge25Se65Sb10 chalcogenide glass

  • Anupama ViswanathanEmail author
  • Sheenu Thomas


Amorphous nanowires were synthesised from bulk GeSeSb Chalcogenide glass using ethylenediamine/ethanolamine solvent by means of a novel one step method. The synthesized nanowires were characterised by XRD, SEM, XPS, EDS and UV–VIS–NIR spectroscopy. Inspite of having same morphology, it was manifested that the nanowire dimension and bandgap Eg could be tuned with solute concentration which helps for synthesis of chalcogenide glass nanowires with controllable characteristics.



Authors gratefully acknowledge financial support from KSCSTE, Government of Kerala and assistance from SAIF-STIC STIC Cochin and SICC Trivandrum to carry out various analysis.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest to disclose.


  1. 1.
    N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, 25th anniversary article: semiconductor nanowires: synthesis, characterization, and applications. Adv. Mater. 26, 2137–2184 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Fulati et al., An intracellular glucose biosensor based on nanoflake ZnO. Sens. Actuators B 150(2), 673–680 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Li, Y. Hu, S. Peng, G. Lu, S. Li, Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C 113, 9352–9358 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Yang, J. Zeng, S. Yu, L. Yang, G. Zhou, Y. Qian, Formation process of CdS nanorods via solvothermal route. Chem. Mater. 12, 3259–3263 (2000)CrossRefGoogle Scholar
  5. 5.
    Q. Zhao, L. Hou, R. Huang, Synthesis of ZnS nanorods by a surfactant-assisted soft chemistry method. Inorg. Chem. Commun. 6, 971–973 (2003)CrossRefGoogle Scholar
  6. 6.
    C. Quemard, F. Smektala, V. Couderc, A. Barthe, J. Lucas, Chalcogenide glasses with high non linear optical properties for telecommunications. J. Phys. Chem. Solids 62, 1435–1440 (2001)CrossRefGoogle Scholar
  7. 7.
    A. Zakery, S.R. Elliott, Optical properties and applications of chalcogenide glasses: a review. J. Non Cryst. Solids 330, 1–12 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Giridhar, P.S.L. Narasimham, M. Sudha, Electrical properties of Ge–Sb–Se glasses. J. Non Cryst. Solids 37, 165–179 (1980)CrossRefGoogle Scholar
  9. 9.
    Mahadevan et al., Chemical ordering and topological effects in chalcogenide glass systems. Indian J. Pure Appl. Phys. 33, 643–652 (1995)Google Scholar
  10. 10.
    W. Wei, R. Wang, X. Shen, L. Fang, B. Luther-davies, Correlation between structural and physical properties in Ge–Sb–Se glasses. J. Phys. Chem. C 117, 16571–16576 (2013)CrossRefGoogle Scholar
  11. 11.
    A.R. Hilton, D.J. Hayes, M.D. Rechtin, Infrared absorption of some high-purity chalcogenide glasses. J. Non Cryst. Solids 17, 319–338 (1975)CrossRefGoogle Scholar
  12. 12.
    Y. Zha, M. Waldmann, C.B. Arnold, A review on solution processing of chalcogenide glasses for optical components. Opt. Mater. Express. 3(9), 3795–3798 (2013)CrossRefGoogle Scholar
  13. 13.
    R.P. Wang, A.V. Rode, D.Y. Choi, R.P. Wang, A.V. Rode, D.Y. Choi, Investigation of the structure of GexAsySe1–x–y glasses by X-ray photoelectron spectroscopy. J. Appl. Phys. 103, 083537(1–5) (2008)Google Scholar
  14. 14.
    J. Grigas, E. Talik, M. Adamiec, V. Lazauskas, X-ray photoelectron spectra and electronic structure of quasi-one-dimensional SbSeI crystals. Condens. Matter. Phys. 10(1), 101–110 (2007)CrossRefGoogle Scholar
  15. 15.
    W. Wei et al., Structural investigation on GexSb10Se90–x glasses using X-ray photoelectron spectra. J. Appl. Phys. 115, 183506 (2014)CrossRefGoogle Scholar
  16. 16.
    G.C. Chern, I. Lauks, Spin coated amorphous chalcogenide films: structural characterization. J. Appl. Phys. 54(5), 2701–2705 (1983)CrossRefGoogle Scholar
  17. 17.
    A.C.T. Kohoutek, T. Wanger, M. Fruma, Effect of cluster size of chalcogenide glass nanocolloidal solutions on the surface morphology of spin-coated amorphous films. J. Appl. Phys. 103, 063511(1–6) (2008)CrossRefGoogle Scholar
  18. 18.
    I. Sebastian, S. Mathew, V.P.N. Nampoori, P. Radhakrishnan, S. Thomas, Concentration tuned bandgap and corresponding nonlinear refractive index dispersion in Ga–Ge–Se nanocolloids. J. Appl. Phys. 114(53102), 1–5 (2013)Google Scholar
  19. 19.
    J. Yang, C. Xue, S. Yu, J. Zeng, Y. Qian, General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape. Angew. Chem. Int. Ed. 41(24), 4697–4700 (2002)CrossRefGoogle Scholar
  20. 20.
    I. Sebastian et al., Impact of intermediate localized states on nonlinear optical absorption of Ga–Ge–Se nanocolloidal solutions Impact of intermediate localized states on nonlinear optical absorption of Ga–Ge–Se nanocolloidal solutions. Appl. Phys. Lett. 102, 031115(1–5) (2013)CrossRefGoogle Scholar
  21. 21.
    R.G.J. Tauc, Optical properties and electronic structure of amorphous germanium. Phys. State Solid 15, 627 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International School of PhotonicsCochin University of Science and TechnologyKochiIndia

Personalised recommendations