Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18221–18230 | Cite as

Enhanced electrical and magnetic properties in BZT/NFO multiferroic composites derived by MARH

  • Arpana Singh
  • Kashif ShamimEmail author
  • Seema Sharma
  • Radheshyam Rai
  • Poonam Kumari


Multiferroic materials comprising of ferroelectric (FE) and ferromagnetic (FM) composites exhibits added functionalities significant from scientific and technological standouts. But these FE/FM composites are very sensitive to processing parameters, sintering, and chemical modifications. In present work FE/FM composites (1 − x)(Ba Zr0.15, Ti0.85)O3–xNiFe2O4 (BZT–NFO) was sintered by microwave assisted radiant heating (MARH) technique, which has evolved as a hybrid sintering technique, where radiant and microwave sintering methods are coupled together, in such a way that, when conventional radiant heating is applied for sintering, simultaneously different (0%, 15%, 30% and 50%) Microwave power (Mw) percentages are applied in a precise and controlled manner. The present study dwells on the role of different Mw power applied during sintering on the structure, dielectric, ferroelectric and magnetic properties of (1 − x) (Ba Zr0.15, Ti0.85) O3–xNiFe2O4 (BZT–NFO) composites. Structural phase analysis carried out by X-ray diffraction displays Bragg peaks corresponding to both perovskite and ferrite phases. Since the compositional variation of ferrite remains as low as 1% for all the compositions, the overall crystal phase is dominated by perovskite phase which was further confirmed by room temperature Raman spectra. No intermediate phase or structural transitions were observed for all the compounds. Dielectric permittivity increases by 35% for the sample sintered with 15% Mw power, while leakage current decreases by an order of magnitude. At higher temperature, mobility due to oxygen vacancies/or defects present in the samples dominates the conduction mechanism. Magnetic hysteresis curve at room temperature suggests the soft magnetic nature exhibiting ferromagnetic behavior for all the samples. Sample sintered with 15 Mw power exhibits higher saturation magnetization (Ms).



Authors wish to thank Dr V R Reddy, Dr V Sathe and Dr Mukul Gupta for MARH sintering, ferroelectric, X-ray Diffraction and Raman spectroscopic measurements of UGC-DAE Consortium for Scientific Research Indore Centre, Indore, India.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  3. 3.
    M.N.- Ul-Haq, V.V. Shvartsman, H. Trivedi, S. Salamon, S. Webers, H. Wende, U. Hagemann, J. Schroder, D.C. Lupascu, Strong converse magnetoelectric effect in (Ba, Ca) (Zr, Ti)O3–NiFe2O4 multiferroic: a relationship between phase-connectivity and interface coupling. Acta Mater. 144, 305 (2018)CrossRefGoogle Scholar
  4. 4.
    B. Sun, P. Han, W. Zhao, Y. Liu, P. Chen, White-light-controlled magnetic and ferroelectric properties in multiferroic BiFeO3 square nanosheets. J. Phys. Chem. C 118, 18814 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Marzouki, H. Harzali, V. Loyau, P. Gemeiner, K. Zehani, B. Dkhil, L. Bessais, A. Megriche, Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater. 145, 316 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Rani, V.K. Kushwaha, J. Kolte, Structural, dielectric and magnetoelectric studies of [0.5 Ba (Zr0.2Ti0.8) O3–0.5(Ba0.7Ca0.3)TiO3]-Ni0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites. J. Mater. Sci. Mater. Electron. 24(6), 1900 (2014)CrossRefGoogle Scholar
  8. 8.
    N.S. Negi, R. Kumar, H. Sharma, J. Shah, R.K. Kotnala, Structural, multiferroic, dielectric and magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 lead-free composites. J. Magn. Magn. Mater. 456, 292 (2018)CrossRefGoogle Scholar
  9. 9.
    C. Harnagea, L. Mitoseriu, V. Buscaglia, I. Pallecchi, P. Nanni, Magnetic and ferroelectric domainstructures in BaTiO3–(Ni0.5Zn0.5)Fe2O4 multiferroic ceramics. J. Eur. Ceram. Soc. 27, 3947 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Yang, H. Wang, L. He, L. Shui, X. Yao, Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 108, 045001 (2010)Google Scholar
  11. 11.
    A. Singh, V. Singh, K.K. Bamzai, Structural and magnetic studies on (x) PbTiO3–(1–x)SrFe12O19 composite multiferroic. Mater. Chem. Phys. 155, 92 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Siddaramanna, V. Kothai, C. Srivastava, R. Ranjan, Stabilization of metastable tetragonal phase in a rhombohedral magnetoelectric multiferroic BiFeO3–PbTiO3. J. Phys. D: Appl. Phys. 47, 045004 (2014)CrossRefGoogle Scholar
  13. 13.
    V.R. Reddy, S.K. Upadhyay, A. Gupta, A.M. Awasthi, S. Hussain, Enhanced dielectric and ferroelectric properties of BaTiO3 ceramics prepared by microwave assisted radiant hybrid sintering. Ceram. Int. 40, 8333 (2014)CrossRefGoogle Scholar
  14. 14.
    J.D.S. Guerra, S. Betal, M. Pal, J.E. Garcia, A.J.A. Oliveira, J.C.M. Peko, A.C. Hernandes, R. Guo, A.S. Bhalla, Magnetoelectric response in (1–x)PbZr0.65Ti0.35O3–xBaFe12O19 multiferroic ceramic composites. J. Am. Ceram. Soc. 98, 1542 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Chauhan, R.C. Srivastava, Various properties of 0.6 BaTiO3–0.4 Ni0.5Zr0.5Fe2O4 multiferroic composite ceramics. Pramana—J. Phys. 87, 45 (2016)CrossRefGoogle Scholar
  16. 16.
    J.F. Scott, Application of modern ferroelectrics. Science 315, 954 (2007)CrossRefGoogle Scholar
  17. 17.
    M.M. Kumar, K. Srinivas, S.V. Suryanarayana, Relaxor behavior in BaTiO3. Appl. Phys. Lett. 76(10), 1330 (2000)CrossRefGoogle Scholar
  18. 18.
    W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, High piezoelectric d33 coefficient of lead free (Ba0.93Ca0.07)(Ti0.95Zr0.05)O3 ceramics sintered at optimal temperature. Mat. Sci. Eng. B 176, 65 (2011)CrossRefGoogle Scholar
  19. 19.
    A. Singh, K. Shamim, S. Sharma, R. Rai, Effect of different microwave power applied during microwave assisted radiant heating on the structure, dielectric and electrical properties of Ba0.8Ca0.2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 29, 8158 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Jarupoom, K. Pengpat, G. Rujijanagul, Enhanced piezoelectric properties and lowered sintering temperature of Ba(Zr0.07Ti0.93)O3 by B2O3 addition. Curr. Appl. Phys. 10, 557 (2010)CrossRefGoogle Scholar
  21. 21.
    W. Liu, X. Ren, Large piezoelectric effect in Non-Pb ceramics. Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao, X. Ren, Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. J. Appl. Phys. 109, 054110 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Writz, M. Fermigler, One dimensional patterns and wavelength selection in magnetic fluids. Phys. Rev. Lett. 72, 2294 (1994)CrossRefGoogle Scholar
  24. 24.
    R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359 (1994)CrossRefGoogle Scholar
  25. 25.
    P. Sivakumar, R. Ramsesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchevlan, Synthesis and characterization of NiF2O4 nano particles and nano rods. J. Alloys Compd. 53, 6 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Dehghan, S.S. Ebrahimi, A. Badiei, Investigation of effective parameters on the synthesis of Ni-ferrite nano crystalline powders by co-precipitation method. J. Non-Cryst. Solids 354, 186 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Kumar, S.K. Rout, S. Parida, G.P. Singh, S.K. Sharma, S.K. Pardhan, I. Wonkim, Structural optical and dielectric studies of NixZn1–xFe2O4 prepared by auto combustion route. Phys. B 407, 935 (2012)CrossRefGoogle Scholar
  28. 28.
    M. Rashid, O. Faud, Synthesis and characterization of nano-seized nickel ferrites from fly ash forcatalytic oxidation of Co. Mater. Chem. Phys. 94, 365 (2005)CrossRefGoogle Scholar
  29. 29.
    I. Coondoo, N. Panwar, H. Amorin, V.E. Ramana, M. Alguero, A. Kholkin, Enhanced piezoelectric properties of praseodymium-modified lead-free (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 ceramics. J. Am. Ceram. Soc. 98, 3127 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Priya, S.C. Yang, D. Maurya, Y. Yan, in Composite Magnetoelectrics, ed. by G. Srinivasan, S. Priya, N.X. Sun. Recent advances in piezoelectric and magnetoelectric materials phenomena (Woodhead Publishing, Sawston, 2015), p. 103CrossRefGoogle Scholar
  31. 31.
    L. Hao, D. Zhou, Q. Fu, Y. Hu, Multiferroic properties of multi-layered BaTiO3-CoFe2O4 composites via tape casing method. J. Mater. Sci. 48, 178 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Ke, H. Fan, H. Hunang, H.L.W. Chan, S. Yu, Dielectric, ferroelectric and grain growth of CaxBa1–xNb2O6 ceramics with tungsten bronze structure. J. Appl. Phys. 104, 01 (2008)Google Scholar
  33. 33.
    S.W. da Dilva, K. Nagagoi, M.S. Silva, A. Franco jr, V.K. Garg, A.C. Oliveria, P.C. Morais, Raman study of cations’ distribution in Zn xMg1–xFe2O4, nanoparticles. J. Nanopart. Res. 14, 798 (2012)CrossRefGoogle Scholar
  34. 34.
    X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, A ferroelectric ferromagnetic composite material with significant permeability and permittivity. Adv. Funct. Mater. 14, 920 (2004)CrossRefGoogle Scholar
  35. 35.
    J.-P. Zhou, Y.-X. Zhang, Q. Liu, P. Liu, Magnetoelectric effects on ferromagnetic and ferroelectric phase transitions in multiferroic materials. Acta Mater. 76, 355–370 (2014)CrossRefGoogle Scholar
  36. 36.
    C.X. Li, B. Yang, S.T. Zhang, D.Q. Liu, R. Zhang, Y. Sun, W.W. Cao, Effects of Mn doping on multiferroic and magneto-capacitive properties of 0.33Ba0.70Ca0.30TiO3–0.67BiFeO3 diphasic ceramics. J. Alloys Compd. 590, 346 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Liu, S. Xue, S. Xiu, B. Shen, J. Zhai, Surface modified Ba (Zr0.3 Ti0.7)O3 nanofiber by polyvinylpyrrolidone fillers for poly (vinylidene fluoride) composite with enhanced dielectric constant and energy storage density. Sci. Rep. 6, 26198 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Shukla, R.N.P. Choudhary, A.K. Thakur, Defects structure and magnetic moments in β-phases of CoAl and CoGa. J. Phys. Chem. Sol. 70, 1401 (2009)CrossRefGoogle Scholar
  39. 39.
    A.K. Jonsher, Dielectric Relaxations in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  40. 40.
    K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar
  41. 41.
    M. Pollack, T.H. Geballe, Low-frequency conductivity due to hopping processes in Silicon. Phys. Rev. B 122, 1742 (1961)CrossRefGoogle Scholar
  42. 42.
    H. Nathani, S. Gubbala, R.D.K. Mishra, Magnetic behavior of nano-crystalline nickel ferrite: part-1, the effect of surface roughness. Mater. Sci. Eng. B 121, 126 (2015)CrossRefGoogle Scholar
  43. 43.
    C.N. Chinnaswamy, A. Narayanswamy, N. Ponpandian, K. Chattopadhayay, H. Gueraut, J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys. Condens. Mater. 13(5), 1179 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of PhysicsA N CollegePatnaIndia
  2. 2.Department of PhysicsEternal UniversitySirmourIndia

Personalised recommendations