Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18209–18220 | Cite as

Fabrication of efficient dye-sensitized solar cells with photoanode containing TiO2–Au and TiO2–Ag plasmonic nanocomposites

  • Swati Bhardwaj
  • Arnab Pal
  • Kuntal Chatterjee
  • Tushar H. Rana
  • Gourav Bhattacharya
  • Susanta Sinha Roy
  • Papia Chowdhury
  • Ganesh D. SharmaEmail author
  • Subhayan BiswasEmail author


Herein, we report the effect of incorporation of two types of plasmonic nanocomposites, TiO2–Au and TiO2–Ag in different ratios, in the TiO2 photoanode of dye-sensitized solar cells (DSSCs). Electrophoretic deposition technique (EPD) has been utilized for the deposition of these nanocomposite photoanodes. The high-resolution transmission electron microscopy reveals that the nanocomposites, TiO2–Au and TiO2–Ag, have a wide size distribution of Au (5–60 nm) and Ag (20–130 nm) nanoparticles embedded in the TiO2 matrix. The UV–Visible absorption spectra of these nanocomposite films reveal the enhancement in the optical density due to the plasmonic effect. The DSSC based on photoanode consists of plasmonic nanocomposite TiO2–Au:TiO2–Ag (3:1 ratio) showed power conversion efficiency (PCE) of 10.9% which is 187% higher than that pristine TiO2 counterpart. The enhancement in the PCE has been confirmed by the photoluminescence and electro-impedance spectroscopy indicating that both Au and Ag play an important role in enhancing the PCE of DSSCs due to the plasmonic effect.



This research is supported by the funding from CSIR scheme 03(1304)/13/EMR-II, UGC 42-1069/ 2013 (SR) and LNM Institute of Information Technology, Jaipur.


  1. 1.
    N. Zhou, V. Lopez-Puente, Q. Wang, L. Polavarapu, I. Pastoriza-Santos, Q.H. Xu, Plasmon-enhanced light harvesting application in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 5, 29076–29097 (2015)CrossRefGoogle Scholar
  2. 2.
    D.T. Gangadharana, Z. Xua, Y. Liu, R. Izquierdo, D. Ma, Recent advancements in plasmon-enhanced promising third-generation solar cells. Nanophotonics 6, 153–175 (2017)CrossRefGoogle Scholar
  3. 3.
    W.R. Erwin, H.F. Zarick, E.M. Taibert, R. Bardhan, Light trapping in mesoporous solar cells with plasmonic nanostructures. Energy Environ. Sci. 9, 1577–1601 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Pandikumar, S.-P. Lim, S. Jayabal, N.M. Huang, H.N. Lim, R. Ramaraj, Titania@gold plasmonic nanostructures: an ideal photoanode for dye-sensitized solar cells. Renew. Sustain. Energy Rev. 60, 408–420 (2016)CrossRefGoogle Scholar
  5. 5.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Hoboken, 1983)Google Scholar
  6. 6.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)CrossRefGoogle Scholar
  7. 7.
    N. Chander, A.F. Khan, E. Thouti, S.K. Sardana, P.S. Chandrasekhar, V. Dutta, V.K. Komarala, Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye-sensitized solar cells. Solar Energy 109, 11–23 (2014)CrossRefGoogle Scholar
  8. 8.
    Q. Wang, T. Butburee, X. Wu, H.J. Chen, G. Liu, L.Z. Wang, Enhanced performance of dye-sensitized solar cells by doping Au nanoparticles into photoanodes: a size effect study. J. Mater. Chem. A 1, 13524–13531 (2013)CrossRefGoogle Scholar
  9. 9.
    A.O. Govorov, H. Zhang, Y.K. Gun’ko, Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 117, 16616–16631 (2013)CrossRefGoogle Scholar
  10. 10.
    H.R. Stuart, D.G. Hall, Absorption enhancement in silicon on insulator waveguides using metal island films. Appl. Phys. Lett. 69, 2327–2329 (1996)CrossRefGoogle Scholar
  11. 11.
    H. Choi, W.T. Chen, P.V. Kamat, Know Thy Nano Neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6, 4418–4427 (2012)CrossRefGoogle Scholar
  12. 12.
    P.V. Kamat, B. Shanghavi, Interparticle electron transfer in metal/semic onductor composites. Picosecond dynamics of CdS-capped gold. Nanoclust. J. Phys. Chem. B 101, 7675–7679 (1997)CrossRefGoogle Scholar
  13. 13.
    G. Merga, L.C. Cass, D.M. Chipman, D. Meisei, Probing silver nanoparticles during catalytic H2 evolution. J. Am. Chem. Soc. 130, 7067–7076 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Ali Shah, A. Ali Umar, M.M. Salleh, Efficient quantum capacitance enhancement in DSSC by gold nanoparticles plasmonic effect. Electrochim. Acta 105, 134–142 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Tanvi, R.K. Mahajan, S. Bedi, V. Kumar, A. Saxena, D.K. Singh, Aswal, Broadband enhancement in absorption cross-section of N719 dye using different anisotropic shaped single crystalline silver nanoparticle. RSC Adv. 6, 48064–48071 (2016)CrossRefGoogle Scholar
  16. 16.
    A. Tanvi, R.K. Mahajan, S. Bedi, V. Kumar, D.K. Saxena, Aswal, Effect of the crystallinity of silver nanoparticles on surface plasmon resonance induced enhancement of effective absorption cross-section of dyes. J. Appl. Phys. 117, 83111 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Du, J. Qi, D. Wang, Z. Tang, Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 5, 6914–6918 (2012)CrossRefGoogle Scholar
  18. 18.
    H. Li, W. Hong, F. Cai, Q. Tang, Y. Yan, X. Hu, B. Zhao, D. Zhang, Z. Xu, Au@SiO2 nanoparticles coupling co-sensitizers for synergic efficiency enhancement of dye sensitized solar cells. J. Mater. Chem. 22, 24734–24743 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Li, K. Yuan, Y. Zhang, J. Wang, Synthesis of Au-SiO2 asymmetric clusters and their application in ZnO nanosheet-based dye-sensitized solar cells. ACS Appl. Mater. Interfaces 5, 5601–5608 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Li, H. Wang, Q. Feng, G. Zhou, Z.-S. Wang, Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ. Sci. 6, 2156–2165 (2013)CrossRefGoogle Scholar
  21. 21.
    O. Akhavan, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 336, 117–124 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Lisunova, M. Mahmoud, N. Holland, Z.A. Combs, M.A. El-Sayed, V.V. Tsukruk, The unusual fluorescence intensity enhancement of poly(p-phenyleneethynylene) polymer separated from the silver nanocube surface by H-bonded LbL shells. J. Mater. Chem. 22, 16745–16753 (2012)CrossRefGoogle Scholar
  23. 23.
    X. Zhang, J. Liu, S. Li, X. Tan, M. Yu, J. Du, Bioinspired synthesis of Ag@TiO2 plasmonic nanocomposites to enhance the light harvesting of dye-sensitized solar cells. RSC Adv. 3, 18587–18595 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Wang, J. Zhai, Y. Song, Plasmonic cooperation effect of metal nanomaterials at Au–TiO2–Ag interface to enhance photovoltaic performance for dye-sensitized solar cells. RSC Adv. 5, 210–214 (2015)CrossRefGoogle Scholar
  25. 25.
    H. Dong, Z. Wu, A. El-Shafei, B. Xia, J. Xi, S. Ning, B. Jiao, X. Hou, Ag-encapsulated Au plasmonic nanorods for enhanced dye-sensitized solar cell performance. J. Mater. Chem. A 3, 4659–4668 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Al-Azawi Mohammed, N. Bidin, M. Bououdin, S.M. Mohammad, Preparation of gold and gold-silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Sol. Energy 126, 93–104 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Yun, S.H. Hwang, J. Jang, Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells. ACS Appl Mater Interfaces 7, 2055–2063 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Dang, J. Qi, M.T. Klug, P.-Y. Chen, D.S. Yun, N.X. Fang, P.T. Hammond, A.M. Belcher, Tunable localized surface plasmon-enabled broadband light-harvesting enhancement for high-efficiency panchromatic dye-sensitized solar cells. Nano Lett. 13, 637–642 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Wang, J. Zhai, Y. Song, L. He, Ag shell thickness effect of Au@Ag@SiO core-shell nanoparticles on optoelectronic performance for dye sensitized. Solar Cells Chem. Commun. 52, 2390–2393 (2016)CrossRefGoogle Scholar
  30. 30.
    S.P. Lim, Y.S. Lim, A. Pandikumar, H.N. Lim, Y.H. Ng, R. Ramaraj, D.C.S. Bien, O.K. Abou-Zied, N.M. Huang, Gold–silver@TiO2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Phys. Chem. Chem. Phys. 19, 1395–1407 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Ran, J. Fan, X. Zhang, J. Mao, G. Shao, Enhanced performances of dye-sensitized solar cells based on Au-TiO2 and Ag-TiO2 plasmonic hybrid nanocomposites. Appl. Surf. Sci. 430, 415–423 (2018)CrossRefGoogle Scholar
  32. 32.
    O. Amiri, M.S. -Niasari, N. Mir, F. Beshkar, M. Saadat, F. Ansari, Plasmonic enhancement of dye-sensitized solar cells by using Au-decorated Ag dendrites as a morphology-engineered. Renew. Energy (2018). CrossRefGoogle Scholar
  33. 33.
    H.F. Zarick, W.R. Erwin, A. Boulesbaa, O.K. Hurd, J.A. Webb, A.A. Puretzky, D.B. Geohegan, R. Bardhan, Improving light harvesting in dye-sensitized solar cells using hybrid bimetallic nanostructures. ACS Photonics 3, 385–394 (2016)CrossRefGoogle Scholar
  34. 34.
    Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles. Sci. Rep. 3, 2112 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Bhardwaj, A. Pal, K. Chatterjee, P. Chowdhury, S. Saha, A. Barman, T.H. Rana, G.D. Sharma, S. Biswas, Electrophoretic deposition of plasmonic nanocomposite for the fabrication of dye-sensitized solar cells. IJPAP. 55, 73–80 (2017)Google Scholar
  36. 36.
    S. Bhardwaj, A. Pal, K. Chatterjee, T.H. Rana, G. Bhattacharya, S. Sinha Roy, P. Chowdhury, G.D. Sharma, S. Biswas, J. Mater. Sci. (2018). CrossRefGoogle Scholar
  37. 37.
    N. Korea, T. Tsukamoto, H. Shoji, T. Hotta, Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism. Jpn. J. App. Phys. 34, 1643–1647 (1995)CrossRefGoogle Scholar
  38. 38.
    N.D. Abazovic, M.I. Cÿomor, M.D. Dramic´anin, D.J. Jovanovic, S.P. .Ahrenkiel, J.M. Nedeljkovic, Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B 110, 25366–25370 (2006)CrossRefGoogle Scholar
  39. 39.
    R. Kern, R. Sastrawan, J. Ferber, R. Stang, J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 47, 4213–4225 (2002)CrossRefGoogle Scholar
  40. 40.
    C. Harris, P.V. Kamat, Photocatalytic events of CdSe quantum dots in confined media. Electron. Behav. Coupled Platin. Nanopart. ACS Nano 4, 7321–7330 (2010)Google Scholar
  41. 41.
    F. Tan, T. Li, N. Wang, S.K. Lai, C.C. Tsoi, W. Yu, X. Zhang, Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400–800 nm. Sci. Rep. 6, 33049 (2016). CrossRefGoogle Scholar
  42. 42.
    P.V. Kamat, Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. J. Phys. Chem. Lett. 3, 663–672 (2012)CrossRefGoogle Scholar
  43. 43.
    M. Misra, N. Singh, R.K. Gupta, Enhanced visible-light-driven photocatalytic activity of Au@Ag core-shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds. Catal. Sci. Technol. 7, 570–580 (2017)CrossRefGoogle Scholar
  44. 44.
    R. Katoh, A. Furube, K. Yamanaka, T. Morikawa, Charge separation and trapping in N-doped TiO2 photocatalysts: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 1, 3261–3265 (2010). CrossRefGoogle Scholar
  45. 45.
    S. Link, M.A. El-Sayed, Shape and size dependence of radiative, non-radiative photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19(3), 409–453 (2000)CrossRefGoogle Scholar
  46. 46.
    X. Zhang, J. Liu, S. Li, X. Tan, J. Zhang, M. Yua, M. Zhao, DNA assembled single-walled carbon nanotube nanocomposites for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 1, 11070–11077 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsThe LNM Institute of Information TechnologyJaipurIndia
  2. 2.Vidyasagar UniversityMidnaporeIndia
  3. 3.Department of Physics, School of Natural ScienceShiv Nadar UniversityGreater NoidaIndia
  4. 4.Department of PhysicsJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations