Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18179–18186 | Cite as

Nitrogen–sulfur co-doped porous carbon prepared using ionic liquids as a dual heteroatom source and their application for Li-ion batteries

  • Mengqi Du
  • Yanshuang Meng
  • Chaoyu Duan
  • Chen Wang
  • Fuliang ZhuEmail author
  • Yue ZhangEmail author


Nitrogen–sulfur co-doped porous carbon (NSPC) were prepared by using ionic liquids as both nitrogen and sulfur source. The as-obtained NSPC exhibits open pore structure with thin carbon walls and nitrogen (2.32 wt%) and sulfur (0.91 wt%) doping. When used as lithium-ion batteries (LIBs), NSPC shows a high reversible capacity of 821 mAh g−1 at 0.1 A g−1 after 50 cycles. Even after 1000 cycles, the NSPC exhibits a stable reversible capacity of 533 mAh g−1 at current density of 1.5 A g−1. The excellent electrochemical performance of NSPC is attributed to two points: (1) interconnected three-dimensional pore structure; (2) Nitrogen and sulfur doping and the synergic effect of dual-doping heteroatoms. This work provides new ideas for the development of new anode materials for LIBs.



The authors thank the National Natural Science Foundation of China (NFSC) (Grant Nos. 51364024, 51404124), Natural Science Foundation of Gansu Province (Grant No. 1506RJZA100) and the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1606RJIA322) for financial support.

Compliance with ethical standards

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest.


  1. 1.
    Y. Yang, S. Jin, Z. Zhang, Z. Du, H. Liu, J. Yang, H. Xu, H. Ji, ACS Appl. Mater. Interfaces 9, 14180–14186 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Ren, M.N.F. Hoque, J. Liu, J. Warzywoda, Z. Fan, ACS Appl. Mater. Interfaces 21, 162–171 (2016)Google Scholar
  3. 3.
    G. Ren, M.N.F. Hoque, X. Pan, J. Warzywoda, Z. Fan, J. Mater. Chem. A 3, 10787–10794 (2015)CrossRefGoogle Scholar
  4. 4.
    S.Q. Zhang, R. Lin, W.B. Yue, F.Z. Niu, J. Ma, X.J. Yang, Chem. Eng. J. 314, 19–26 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Yan, Y. Wei, Q. Li, M. Shi, C. Zhao, L. Chen, C. Fan, R. Yang, Y. Xu, J. Mater. Sci. Mater. Electron. 29, 11325–11335 (2018)CrossRefGoogle Scholar
  6. 6.
    Y. Zhou, H. Wang, Y. Zeng, C. Li, Y. Shen, J. Chang, Q. Duan, Mater. Lett. 155, 18–22 (2015)CrossRefGoogle Scholar
  7. 7.
    C.M. Subramaniyam, N.R. Srinivasan, Z. Tai, H.K. Liu, J.B. Goodenough, S.X. Dou, J. Mater. Chem. A 5, 7345–7354 (2017)CrossRefGoogle Scholar
  8. 8.
    H.G. Wang, C.P. Yuan, R. Zhou, Q. Duan, Y.H. Li, Chem. Eng. J. 316, 1004–1010 (2017)CrossRefGoogle Scholar
  9. 9.
    M.H. Kai Zhou, Y. He, L. Yang, C. Han, R. Lv, F. Kang, B. Li, Carbon 129, 667–673 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, B. Zhang, X. Tao, Q. Mei, L. Zheng, J. Zhang, X. Tan, C. Liu, T. Luo, X. Cheng, J. Shi, D. Shao, X. Sun, Q. Zhu, L. Zhang, B. Han, ChemCatChem 10, 1241–1247 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Wang, Y. Zheng, X. Wang, S. Chen, F. Xu, L. Zuo, J. Wu, L. Sun, Z. Li, H. Hou, Y. Song, ACS Appl. Mater. Interfaces 6, 7117–7125 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Badi, J. Mater. Sci. Mater. Electron. 27, 10342–10346 (2016)CrossRefGoogle Scholar
  13. 13.
    W. Yang, W. Yang, F. Ding, L. Sang, Z.P. Ma, G.J. Shao, Carbon 111, 419–427 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Lu, R. Chen, Y. Hu, X. Wang, Y. Wang, L. Ma, G. Zhu, T. Chen, Z. Tie, Z. Jin, J. Liu, Nanoscale 9, 1972–1977 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Ou, L. Yang, Y. Zhang, L. Chen, Y. Guo, D. Xiao, Chin. J. Chem. 33, 1293–1302 (2015)CrossRefGoogle Scholar
  16. 16.
    X. Wang, Q. Weng, X. Liu, X. Wang, D.M. Tang, W. Tian, C. Zhang, W. Yi, D. Liu, Y. Bando, D. Golberg, Nano Lett. 14, 1164–1171 (2014)CrossRefGoogle Scholar
  17. 17.
    Y. Yang, F. Zheng, G. Xia, Z. Lun, Q. Chen, J. Mater. Chem. A. 3, 18657–18666 (2015)CrossRefGoogle Scholar
  18. 18.
    J.J. Quijano-Briones, H.N. Fernandez-Escamilla, A. Tlahuice-Flores, Phys. Chem. Chem. Phys. 18, 15505–15509 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Jayaraman, S. Madhavi, V. Aravindan, J. Mater. Chem. A 6, 3242–3248 (2018)CrossRefGoogle Scholar
  20. 20.
    Z. Qiu, Y. Lin, H. Xin, P. Han, D. Li, B. Yang, P. Li, S. Ullah, H. Fan, C. Zhu, J. Xu, Carbon 126, 85–92 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Cai, C. Wang, C. Shi, N. Tan, J. Alloys Compd. 731, 235–242 (2018)CrossRefGoogle Scholar
  22. 22.
    S.A. Wohlgemuth, F. Vilela, M.M. Titirici, M. Antonietti, Green Chem. 14, 741–749 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.S. Yun, V. Le, H. Kim, S. Chang, S.J. Baek, S. Park, B.H. Kim, Y. Kim, K. Kang, H. Jin, J. Power Sources 262, 79–85 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Wu, J. Li, Y. Tian, Y. Su, J. Wang, W. Yang, N. Li, S. Chen, L. Bao, Sci. Rep. UK 5, 13340 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Ma, G. Ning, Y. Sun, Y. Pu, J. Gao. Carbon. 79, 310–320 (2014)CrossRefGoogle Scholar
  26. 26.
    W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du, Z. Fan, L. Xie, H. Zhang, W. Huang, T. Yu, Adv. Mater. 26, 6186–6192 (2014)CrossRefGoogle Scholar
  27. 27.
    J.P. Hallett, T. Welton, Chem. Rev. 111, 3508–3576 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Zhou, L. Bao, S.J. Wu, W. Yang, H. Wang, J. Mater. Res. 32, 404–413 (2017)CrossRefGoogle Scholar
  29. 29.
    D.C. Guo, F. Han, A.H. Lu, Chemistry 21, 1520–1525 (2015)CrossRefGoogle Scholar
  30. 30.
    W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, K. Jiang, Energy Environ. Sci. 8, 2916–2921 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Chen, S. Ji, H. Wang, V. Linkov, R. Wang, Int. J. Hydrogen Energy 43, 5124–5132 (2018)CrossRefGoogle Scholar
  32. 32.
    X. Liu, Y. Wu, Z. Yang, F. Pan, X. Zhong, J. Wang, L. Gu, Y. Yu, J. Power Sources 293, 799–805 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen, X. Liu, X. Xia, Y. Zhao, S.V. Savilov, J. Lin, Z.X. Shen, ACS Nano 10, 10211–10219 (2016)CrossRefGoogle Scholar
  34. 34.
    X. Duan, K. O’Donnell, H. Sun, Y. Wang, S. Wang, Small 11, 3036–3044 (2015)CrossRefGoogle Scholar
  35. 35.
    L. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. Zhao, R.V. Kumar, J. Power Sources 303, 22–28 (2016)CrossRefGoogle Scholar
  36. 36.
    R.Z. Zhang, C.M. Zhang, F.Q. Zheng, X.K. Li, C.L. Sun, W. Chen, Carbon 126, 328–337 (2018)CrossRefGoogle Scholar
  37. 37.
    F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 5, 5261 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen, C. Yan, Adv. Mater. 29, 1–9 (2017)Google Scholar
  39. 39.
    Z. Tan, K. Ni, G. Chen, W. Zeng, Z. Tao, M. Ikram, Q. Zhang, H. Wang, L. Sun, X. Zhu, X. Wu, H. Ji, R.S. Ruoff, Y. Zhu, Adv. Mater. 29, 1603414 (2017)CrossRefGoogle Scholar
  40. 40.
    J.E. Park, Y.J. Jang, Y.J. Kim, M.S. Song, S. Yoon, D.H. Kim, S.J. Kim, Phys. Chem. Chem. Phys. 16, 103–109 (2014)CrossRefGoogle Scholar
  41. 41.
    K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, P. Atanassov, Chem. Commun. 49, 2539–2541 (2013)CrossRefGoogle Scholar
  42. 42.
    J. Zhu, C. Chen, Y. Lu, Y. Ge, H. Jiang, K. Fu, X. Zhang, Carbon 94, 189–195 (2015)CrossRefGoogle Scholar
  43. 43.
    T.S. Yoder, M. Tussing, J.E. Cloud, Y. Yang, J. Power Sources 274, 685–692 (2015)CrossRefGoogle Scholar
  44. 44.
    D. Sun, J. Yang, X. Yan, Chem. Commun. 51, 2134–2137 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Qie, W.M. Chen, Z.H. Wang, Q.G. Shao, X. Li, L.X. Yuan, X.L. Hu, W.X. Zhang, Y.H. Huang, Adv. Mater. 24, 2047–2050 (2012)CrossRefGoogle Scholar
  46. 46.
    J. Ou, L. Yang, Z. Zhang, X. Xi, J. Power Sources 333, 193–202 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
  2. 2.Department of Manufacturing EngineeringGeorgia Southern UniversityStatesboroUSA
  3. 3.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalsLanzhouChina

Personalised recommendations