Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18167–18177 | Cite as

Facile morphology control of high aspect ratio patterned Si nanowires by metal-assisted chemical etching

  • Indrajit V. Bagal
  • Muhammad Ali Johar
  • Mostafa Afifi Hassan
  • Aadil Waseem
  • Sang-Wan RyuEmail author


Facile and effective method to fabricate highly ordered silicon nanowires (SiNWs) using metal-assisted chemical etching (MACE) was demonstrated. MACE solutions with various concentrations were studied to understand the etching mechanism for patterned Si substrates with different doping concentrations. MACE rate of Si (100) at different time periods was studied with different doping concentrations (p, p+, n, and n+) at a MACE solution concentration of 5:1:1 for an accurate morphology control and reproducibility of the SiNWs. Based on a four-step model, the SiNW formation mechanism was proposed involving anisotropic etching of SiNWs based on hole transfer between Au/Si interfaces exposed when subjected to MACE solution. Time dependent variation in etch rate of Si to fabricate SiNWs was observed with different doping concentration. The effect of the doping concentration on the etching was revealed based on band diagrams. However, agglomeration of p+-SiNWs was observed, which was attributed to their doping and ability to act against various forces like surface tension during drying. Different aspect ratios of SiNWs were observed for different time periods; n+-SiNWs exhibited the maximum aspect ratio of approximately 81. A visible-light absorbance analysis revealed the potential of the synthesized SiNWs can be good base and host materials for various light harvesting and energy storage devices.



This work was supported by the National Research Foundation of Korea Grant Funded by the Korean Government (NRF-2016R1A2B4008622).


  1. 1.
    Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, P. Yang, Chem. A Eur. J. 8, 1260 (2002)CrossRefGoogle Scholar
  2. 2.
    Y. Cui, Science 293, 1289 (2001)CrossRefGoogle Scholar
  3. 3.
    F. Patolsky, G. Zheng, C.M. Lieber, Nat. Protoc. 1, 1711 (2006)CrossRefGoogle Scholar
  4. 4.
    K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, J. Zhu, Small 1, 1062 (2005)CrossRefGoogle Scholar
  5. 5.
    Y.J. Hwang, A. Boukai, P. Yang, Nano Lett. 3, 1 (2009)Google Scholar
  6. 6.
    V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, D. Jena, Nano Lett. 9, 1549 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Kargar, K. Sun, Y. Jing, C. Chulmin, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, G.Y. Jung, D. Wang, Nano Lett. 13, 3017 (2013)CrossRefGoogle Scholar
  8. 8.
    V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6, 973 (2006)CrossRefGoogle Scholar
  10. 10.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)CrossRefGoogle Scholar
  11. 11.
    D.M. Lyons, K.M. Ryan, M. Morris, J.D. Holmes, Nano Lett. 2, 811 (2002)CrossRefGoogle Scholar
  12. 12.
    K.-H. Hong, J. Kim, S.-H. Lee, J.K. Shin, Nano Lett. 8, 1335 (2008)CrossRefGoogle Scholar
  13. 13.
    K. Choi, Y. Song, B. Ki, J. Oh, ACS Omega 2, 2100 (2017)CrossRefGoogle Scholar
  14. 14.
    D.D.D. Ma, Science 299, 1874 (2003)CrossRefGoogle Scholar
  15. 15.
    F. Toor, J.B. Miller, L.M. Davidson, Nanotechnology 27, 412003 (2016)CrossRefGoogle Scholar
  16. 16.
    M.-K. Kim, H. Sim, S.J. Yoon, S.-H. Gong, C.W. Ahn, Y.H. Cho, Y.H. Lee, Nano Lett. 15, 4102 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Henzie, M.H. Lee, T.W. Odom, Nat. Nanotechnol. 2, 549 (2007)CrossRefGoogle Scholar
  18. 18.
    Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, R.S. Williams, Nano Lett. 9, 2306 (2009)CrossRefGoogle Scholar
  19. 19.
    K. Awazu, X. Wang, M. Fujimaki, T. Kuriyama, A. Sai, Y. Ohki, H. Imai, J. Vac. Sci. Technol. B 23, 934 (2005)CrossRefGoogle Scholar
  20. 20.
    N. Mojarad, M. Hojeij, L. Wang, J. Gobrecht, Y. Ekinci, Nanoscale 7, 4031 (2015)CrossRefGoogle Scholar
  21. 21.
    M.-L. Zhang, K. Peng, X. Fan, J. Jie, R. Zhang, S. Lee, N. Wong, J. Phys. Chem. C 112, 4444 (2008)CrossRefGoogle Scholar
  22. 22.
    X. Zhong, Y. Qu, Y. Lin, L. Liao, X. Duan, ACS Appl. Mater. Interfaces 3, 261 (2011)CrossRefGoogle Scholar
  23. 23.
    K. Balasundaram, J.S. Sadhu, J.C. Shin, B. Azeredo, D. Chanda, M. Malik, K. Hsu, J.A. Rogers, P. Ferreira, S. Sinha, Nanotechnology 23, 30 (2012)CrossRefGoogle Scholar
  24. 24.
    D. Dimova-Malinovska, M. Sendova-Vassileva, N. Tzenov, M. Kamenova, Thin Solid Films 297, 9 (1997)CrossRefGoogle Scholar
  25. 25.
    X. Li, P.W. Bohn, Appl. Phys. Lett. 77, 2572 (2000)CrossRefGoogle Scholar
  26. 26.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, Nano Lett. 9, 4539 (2009)CrossRefGoogle Scholar
  28. 28.
    H. Fang, Y. Wu, J. Zhao, J. Zhu, Nanotechnology 17, 3768 (2006)CrossRefGoogle Scholar
  29. 29.
    X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan, ACS Appl. Mater. Interfaces 3, 261 (2011)CrossRefGoogle Scholar
  30. 30.
    N. Geyer, N. Wollschläger, B. Fuhrmann, A. Tonkikh, A. Berger, P. Werner, M. Jungmann, R. Krause-Rehberg, H.S. Leipner, Nanotechnology 26, 245301 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285 (2011)CrossRefGoogle Scholar
  32. 32.
    O.J. Hildreth, D. Brown, C.P. Wong, Adv. Funct. Mater. 21, 3119 (2011)CrossRefGoogle Scholar
  33. 33.
    K. Rykaczewski, O.J. Hildreth, C.P. Wong, A.G. Fedorov, J.H.J. Scott, Nano Lett. 11, 2369 (2011)CrossRefGoogle Scholar
  34. 34.
    C. Chiappini, X. Liu, J.R. Fakhoury, M. Ferrari, Adv. Funct. Mater. 20, 2231 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Fanciulli, M. Belli, S. Paleari, A. Lamperti, M. Sironi, A. Pizio, ECS J. Solid State Sci. Technol. 5, P3138 (2016)CrossRefGoogle Scholar
  36. 36.
    G. Oskam, J.G. Long, A. Natarajan, P.C. Searson, J. Phys. D 31, 1927 (1998)CrossRefGoogle Scholar
  37. 37.
    A.S. Togonal, L. He, P. Roca i Cabarrocas, Langmuir 30, 10290 (2014)CrossRefGoogle Scholar
  38. 38.
    A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, Nano Lett. 9, 3550 (2009)CrossRefGoogle Scholar
  39. 39.
    M.A. Asgar, M. Hasan, M.F. Huq, Z.H. Mahmood, Int. Nano Lett. 4, 101 (2014)CrossRefGoogle Scholar
  40. 40.
    K. Peng, J. Jie, W. Zhang, S.-T. Lee, Appl. Phys. Lett. 93, 033105 (2008)CrossRefGoogle Scholar
  41. 41.
    D.P. Dubal, D. Aradilla, G. Bidan, P. Gentile, T.J.S. Schubert, J. Wimberg, S. Sadki, P. Gomez-Romero, Sci. Rep. 5, 9771 (2015)CrossRefGoogle Scholar
  42. 42.
    D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 47, 2065 (2018)CrossRefGoogle Scholar
  43. 43.
    D.P. Dubal, N.R. Chodankar, R. Holze, D.H. Kim, P. Gomez-Romero, ChemSusChem 10, 1771 (2017)CrossRefGoogle Scholar
  44. 44.
    N.R. Chodankar, D.P. Dubal, S. Ji, D.H. Kim, Adv. Mater. Interface 5, 1800283 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication September/2018

Authors and Affiliations

  1. 1.Department of PhysicsChonnam National UniversityGwangjuSouth Korea

Personalised recommendations