Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18159–18166 | Cite as

Effect of dysprosium dopant on EPR, magnetic and electrical properties of ZnO nanoparticles

  • C. JayachandraiahEmail author
  • G. Krishnaiah
  • K. Sivakumar
  • A. Divya


The dysprosium (Dy) (1.12, 2.24, 3.33 and 4.02 at.%) modified zinc oxide (ZnO) nanoparticles were synthesized by simple chemical co-precipitation method. The prepared nanoparticles were analyzed by EDAX, TEM, FTIR, EPR, VSM and dielectric studies. The energy dispersive analysis of X-rays confirms the presence of Dy, Zn and O in the prepared samples. The transmission electron micrographs of the prepared samples show that the particles are spherical in nature with average size 22–18 nm. The shifting of Zn–O peak towards lower frequency side in the FTIR spectra of the prepared samples confirms the substitution of Dy ion in the ZnO lattice. EPR investigations exhibit paramagnetic signals at g- 1.956, 2.04 and 2.323. The magnetic properties of the synthesized Dy doped ZnO NPs reveal weak ferromagnetic behavior. The studies on electrical properties of the prepared samples provided new and interesting information on the contribution of grains, grain boundaries and interfacial polarization on dielectric parameters and electrical conductivity.



There is no external agency funding and it is self-funding of authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    J. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. 64, 29–64 (1988)CrossRefGoogle Scholar
  2. 2.
    I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)CrossRefGoogle Scholar
  3. 3.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilutedferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)CrossRefGoogle Scholar
  4. 4.
    C. Liu, F. Yun, H. Morkoc, Ferromagnetism of ZnO and GaN: a review. J. Mater. Sci. Mater. Electron. 16, 555–597 (2005)CrossRefGoogle Scholar
  5. 5.
    H. Xu, A.L. Rosa, T. Frauenheim, R.Q. Zhang, N-doped ZnO nanowires: surface segregation, the effect of hydrogen passivation and applications in spintronics. Phys. Status Solidi (b) 247, 2195–2201 (2010)CrossRefGoogle Scholar
  6. 6.
    T.,OhnoH. Dietl, F. Matsukura, J. Clibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, J. Yang, Q. Guan, L. Yang, Y. Zhang, Effects of Cr-doping on the optical andmagnetic properties in ZnO nanoparticles prepared by sol–gel method. J. Alloys Compd. 486, 835–848 (2009)CrossRefGoogle Scholar
  8. 8.
    H.C. Cheng, C.F. Chen, C.Y. Tsay, Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method. Appl. Phys. Lett. 90, 012113 (2007)CrossRefGoogle Scholar
  9. 9.
    B.N. Pawar, G. Cai, D. Ham, R.S. Mane, T. Ganesh, A.L. Ghule, K.D. Sharma, R. Jadhava, S.H. Han, Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 93, 524–527 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Subramanian, P. Thakur, M. Tanemura, T. Hihara, V. Ganesan, T. Soga, K.H. Chae, R. Jayavel, T. Jimbo, Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method, J. Appl. Phys. 108(1–7), 053904 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Qi, D. Gao, J. Liu, W. Yang, Q. Wang, J. Zhou, Y. Yang, J. Liu, Magnetic properties of Er-doped ZnO films prepared by reactive magnetron sputtering. Appl. Phys. A 100, 79–82 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Ungureanu, H. Schmidt, H.V. Wenckstern, H. Hochmuth, M. Lorenz, M. Grundmann, M.F. Morariu, G. Güntherodt, A comparison between ZnO films doped with 3d and 4f magnetic ions. Thin Solid Films 515, 8761–8763 (2007)CrossRefGoogle Scholar
  13. 13.
    X. Ma, The ferromagnetic properties of Gd doped ZnO nanowires. Thin Solid Films 520(17), 5752–5755 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Kumar, P. Kaur, C.L. Chen, R. Thangavel, C.L. Dong, Y.K. Ho, J.F. Lee, ,T.S. Chan, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, Structural, optical and magnetic characterization of Ru doped ZnO nanorods. J. Alloys Compd. 588, 705–709 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Kaur, S. Kumar, C.L. Chen, Y.Y. Hsu, T.S. Chan, C.L. Dong, C. Srivastava, A. Singh, S.M. Rao, Investigations on structural, magnetic and electronic structure of Gd-doped ZnO nanostructures synthesized using sol-gel technique. Appl. Phys. A 122, 161 (2016)CrossRefGoogle Scholar
  16. 16.
    J.S. Malhotra, A.K. Singh, R. Khosla, S.K. Sharma, G. Sharma, S. Kumar, Investigations on structural, optical and magnetic properties of Fe and Dy co-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 29, 3850 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Subramanian, P. Thakur, S. Gautam, K.H. Chae, M. Tanemura, T. Hihara, S. Vijayalakshmi, T. Soga, S.S. Kim, K. Asokan, R. Jayavel, Investigations on the structural, optical and electronic properties of Nd doped ZnO thin films. J. Phys. D 42, 105410 (2009)CrossRefGoogle Scholar
  18. 18.
    G.S. Wua, Y.L. Zhuang, Z.Q. Lin, X.Y. Yuan, T. Xie, L.D. Zhang, Synthesis and photoluminescence of Dy-doped ZnO nanowires. Physica E 31, 5–8 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Zhong, J. Xu, J. Su, Y.L. Chen, Upconversion luminescence from Er-N co-doped of ZnO nanowires prepared by ion implantation method. Appl. Surf. Sci. 257, 3495–3498 (2011)CrossRefGoogle Scholar
  20. 20.
    T.H. Fang, Y.S. Chang, L.W. Ji, S.D. Prior, W. Water, K.J. Chen, C.F. Fang, C.N. Fang, S.T. Shen, Photoluminescence characteristics of ZnO doped with Eu3+ powders. J. Phys. Chem. Solids 70, 1015–1018 (2009)CrossRefGoogle Scholar
  21. 21.
    B. Yan, X. Chen, J. Wu, Induced assembly and photoluminescence of lanthanum (Tb, Eu, Dy) complexes/ZnO/polyethylene glycol hybrid phosphors. Appl. Surf. Sci. 253, 8575–8580 (2007)CrossRefGoogle Scholar
  22. 22.
    C. Jayachandraiah, K. Siva Kumar, G. Krishnaiah, N.M. Rao, Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys Compd. 623, 248–254 (2015)CrossRefGoogle Scholar
  23. 23.
    V. Gandhi, R. Ganesan, H.H.A. Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J. Phys. Chem. C 118, 9715–9725 (2014)CrossRefGoogle Scholar
  24. 24.
    R.N. Aljawfi, F. Rahman, K.M. Batoo, Effect of grain size and grain boundary defects on electrical and magnetic properties of Cr doped ZnO nanoparticles. J. Mol. Struct. 1065–1066, 199–204 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Khataee, R.D.C. Soltani, Y. Hanifehpour, M. Safarpour, H.G. Ranjbar, S.W. Joo, Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation. Ind. Eng. Chem. Res. 53, 1924–1932 (2014)CrossRefGoogle Scholar
  26. 26.
    N. Vorobyeva, M. Rumyantseva, D. Filatova, E. Konstantinova, D. Grishina, A. Abakumov, S. Turner, A. Gaskov, Nanocrystalline ZnO(Ga): paramagnetic centers, surface acidity and gas sensor properties. Sens. Actuators B 182, 555–564 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Wang, S. Hou, H. Chen, L. Xiang, Defects-induced room temperature ferromagnetism in ZnO nanorods grown from ε-Zn(OH)2. J. Phys. Chem. C 118, 19469–19476 (2014)CrossRefGoogle Scholar
  28. 28.
    A.J. Reddy, M.K. Kokila, H. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, B.M. Nagabhushana, R. Hari Krishna, Luminescence studies and EPR investigation of solution combuston derived Eu doped ZnO. Spectrochim. Acta A 132, 305–312 (2014)CrossRefGoogle Scholar
  29. 29.
    A.J. Reddy, M.K. Kokila, H. Nagabhushanac, J.L. Raod, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, EPR and photoluminescence studies of ZnO:Mn nanophosphors prepared by solution combustion route. Spectrochim. Acta A 79, 476–480 (2011)CrossRefGoogle Scholar
  30. 30.
    J.J. Beltra, C.A. Barrero, A. Punnoose, Evidence of ferromagnetic signal enhancement in Fe and Co codoped ZnO nanoparticles by increasing superficial Co3+ content. J. Phys.Chem. C. 118, 13203–13217 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Li, G. Li, R.L. Smith, H. Inomata, Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersion in amorphous silica. Chem. Mater. 12, 3705–3714 (2000)CrossRefGoogle Scholar
  32. 32.
    K.K. Bamzai, G. Kour, B. Kaur, M. Arora, R.P. Pant, Infrared spectroscopic and electron paramagnetic resonance studies on Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 345, 255–260 (2013)CrossRefGoogle Scholar
  33. 33.
    V. Kurikka, P.M. Shafi, Y. Koltypin, A. Gedanken, Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J. Phys. Chem. B. 101, 6409–6414 (1997)CrossRefGoogle Scholar
  34. 34.
    G. Dixit, J.P. Singh, R.C. Srivastava, H.M. Agrawal, Magnetic resonance study of Ce and Gd doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 324, 479–483 (2012)CrossRefGoogle Scholar
  35. 35.
    W. Liu, W. Li, Z. Hu, Z. Tang, X. Tang, Effect of oxygen defects on ferromagnetic of undoped ZnO. J. Appl. Phys. 110, 013901 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Qi, D. Gao, J. Liu, W. Yang, Q. Wang, J. Zhou, Y. Yang, J. Liu, Magnetic properties ofEr-doped ZnO films prepared by reactive magnetron sputtering. Appl. Phys. A 100, 79–82 (2010)CrossRefGoogle Scholar
  37. 37.
    D. Wang, Q. Chen, G. Xing, J. Yi, S.R. Bakaul, J. Ding, J. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO, nanowire arrays. Nano Lett. 12, 3994–4000 (2012)CrossRefGoogle Scholar
  38. 38.
    A. Mahmooda, M.F. Warsi, M.N. Ashiq, M. Ishaq, Substitution of La and Fe with Dy and Mn in multi ferroic La1–xDyxFe1yMnyO3 nanocrystallites. J. Magn. Magn. Mater. 327, 64–70 (2013)CrossRefGoogle Scholar
  39. 39.
    A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, Structural, morphological,electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J. Magn. Magn. Mater. 329, 59–64 (2013)CrossRefGoogle Scholar
  40. 40.
    R. Zamiria, B.K. Singh, D. Dutta, A. Reblo, J.M.F. Ferreira, Electrical properties of Ag-doped ZnO nano-plates synthesized via wet chemical precipitation method. Ceram. Int. 40, 4471–4477 (2014)CrossRefGoogle Scholar
  41. 41.
    J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 88Google Scholar
  42. 42.
    K.W. Wagner, Zurtheorie der unvollkommenendielektrika. Ann. Physik 40, 817–855 (1913)CrossRefGoogle Scholar
  43. 43.
    C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)CrossRefGoogle Scholar
  44. 44.
    M. Arshad, A.S. Ahmed, A. Azam, A.H. Naqvi, Exploring the dielectric behavior of Co doped ZnO nanoparticles synthesized by wet chemical route using impedance spectroscopy. J. Alloys Compd. 577, 469–474 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. Jayachandraiah
    • 1
    Email author
  • G. Krishnaiah
    • 2
  • K. Sivakumar
    • 3
  • A. Divya
    • 3
  1. 1.Department of PhysicsSri Padmavathi Mahila Visvavidyalayam (Women’s University)TirupatiIndia
  2. 2.Department of PhysicsGovt. Degree CollegePuttur, Chittoor Dist.India
  3. 3.Department of PhysicsIIIT-Ongole, Rgukt-APOngoleIndia

Personalised recommendations