Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18151–18158 | Cite as

Synthesis of novel counter electrode by combination of mesoporous–macroporous CZTS films for enhanced performance of quantum-dots sensitized solar cells

  • Siddhant B. Patel
  • Jignasa V. Gohel
Article
  • 96 Downloads

Abstract

This present study aims to manifest the potential of CZTS films as a low-cost counter electrode (CE) in quantum-dots sensitized solar cells (QDSSCs). Hitherto, numerous researchers have reported the application of either CZTS nano particles or films as a counter electrode in dye sensitized solar cells. However, its use in QDSSCs is scarcely reported. Herein, CdS quantum-dots sensitized ZnO film is used as photoanode. In the beginning, as a counter electrode, two different CZTS films (mesoporous and macroporous) are prepared using two different deposition techniques (spray pyrolysis and spin coating, respectively). For the meso-CZTS film, high VOC and FF are observed, whereas, for the macro-CZTS film, high JSC is observed. Hence, to take the advantage of both, subsequently, a film (meso–macro-CZTS) comprising mesoporous film upon the macroporous film is prepared and applied as CE. For the meso–macro-CZTS, substantial enhancement in power conversion efficiency (PCE) is observed. Additionally, to compare the results with commonly reported CEs (SnS/FTO and Pt–FTO) are also applied in QDSSCs. Moreover, to improve the PCE combination of these CEs along with meso–macro-CZTS, for instance, CZTS/SnS/FTO and CZTS/Pt–FTO are also applied as CE. The highest efficiency of 4.34% is achieved with CZTS/Pt–FTO.

Notes

Acknowledgements

The authors would like to thank Chemical Engineering Department, S.V. National Institute for providing facilities to carry out experimental work and sophisticated analytical instrument facility S.V. National Institute of Technology for rendering analytical service for this work.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Renew. Sustain. Energy Rev. 68, 234 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Jiang, Y. Yang, J. Zhu, L. Qiang, T. Ye, L. Li, T. Su, R. Fan, Dalton Trans. 45, 16859 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Lohrasbi, P. Pattanapanishsawat, M. Isenberg, S.S.C. Chuang, Degradation study of dye-sensitized solar cells by electrochemical impedance and FTIR spectroscopy, in 2013 IEEE Energytech.  https://doi.org/10.1109/EnergyTech.2013.6645304
  4. 4.
    H. Wang, Y. Wang, B. He, W. Li, M. Sulaman, J. Xu, S. Yang, Y. Tang, B. Zou, ACS Appl. Mater. Interfaces 8, 18526 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, C. Lin, Sustain. Energy Fuels 1, 1217 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, Carbon N. Y. 47, 2704 (2009)CrossRefGoogle Scholar
  7. 7.
    C. Justin Raj, K. Prabakar, A. Dennyson, Savariraj, H.J. Kim, Electrochim. Acta 103, 231 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Ha Thanh, D. Huynh Thanh, V. Quang Lam, Adv. Optoelectron. (2014).  https://doi.org/10.1155/2014/397681 CrossRefGoogle Scholar
  9. 9.
    J. Xiao, X. Zeng, W. Chen, F. Xiao, S. Wang, Chem. Commun. 49, 11734 (2013)CrossRefGoogle Scholar
  10. 10.
    C.V.V.M. Gopi, M. Venkata-Haritha, Y.-S. Lee, H.-J. Kim, J. Mater. Chem. A 4, 8161 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. Wu, J. Hou, H. Zhao, Z. Liu, X. Yue, S. Peng, H. Cao, Dalton Trans. 47, 2214 (2018)CrossRefGoogle Scholar
  12. 12.
    Y.-S. Lee, C.V.V.M. Gopi, M. Venkata-Haritha, H.-J. Kim, Dalton Trans. 45, 12914 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Chen, A. Xu, J. Tao, H. Tao, Y. Shen, L. Zhu, J. Jiang, T. Wang, L. Pan, ACS Sustain. Chem. Eng. 3, 2652 (2015)CrossRefGoogle Scholar
  14. 14.
    S.B. Patel, J.V. Gohel, in Photocatalytic Nanomaterials for Environmental Applications, ed. by R.J. Tayade, V. Gandhi (Materials Research Forum LLC, Millersville, PA, 2018), pp. 370–404Google Scholar
  15. 15.
    S.B. Patel, J.V. Gohel, Phys. Astron. Int. J. 1, 1 (2017)Google Scholar
  16. 16.
    S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, K.S. Jeon, P.S. Patil, C.W. Jeong, J.Y. Kim, J.H. Kim, J. Alloys Compd. 619, 109 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Chen, H. Tao, Y. Shen, L. Zhu, X. Zeng, J. Tao, T. Wang, Rsc Adv. 5, 6682 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Xin, M. He, W. Han, J. Jung, Z. Lin, Angew. Chem. Int. Ed. 50, 11739 (2011)CrossRefGoogle Scholar
  19. 19.
    W. Wang, H. Shen, L.H. Wong, Z. Su, H. Yao, Y. Li, RSC Adv. 6, 54049 (2016)CrossRefGoogle Scholar
  20. 20.
    J.V. Gohel, A.K. Jana, M. Singh, Appl. Phys. A 123, 1 (2017)CrossRefGoogle Scholar
  21. 21.
    S.B. Patel, J.V. Gohel, J. Mater. Sci. Mater. Electron. 29, 5613 (2018)CrossRefGoogle Scholar
  22. 22.
    S.B. Patel, J.V. Gohel, J. Mater. Sci. 53, 1 (2018)CrossRefGoogle Scholar
  23. 23.
    F. Alam, V. Dutta, Appl. Surf. Sci. 358, 491 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Razzaq, J.Y. Lee, B. Bhattacharya, J.-K. Park, Appl. Nanosci. 4, 745 (2014)CrossRefGoogle Scholar
  25. 25.
    S.B. Patel, J.V. Gohel, in 9th International Conference on Agriculture Chemistry Biology Environmental Science (DiRPUB, Dubai, 2017), pp. 177–182Google Scholar
  26. 26.
    N. Kumari, J.V. Gohel, S.R. Patel, Mater. Sci. Semicond. Process. 75, 149 (2018)CrossRefGoogle Scholar
  27. 27.
    S.K. Swami, A. Kumar, V. Dutta, Energy Procedia 33, 198 (2013)CrossRefGoogle Scholar
  28. 28.
    S.M. Bhosale, M.P. Suryawanshi, J.H. Kim, A.V. Moholkar, Ceram. Int. 41, 8299 (2015)CrossRefGoogle Scholar
  29. 29.
    N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B.U. Haq, Y.Q. Fu, Renew. Sustain. Energy Rev. 59, 726 (2016)CrossRefGoogle Scholar
  30. 30.
    I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, J. Bisquert, Acc. Chem. Res. 42, 1848 (2009)CrossRefGoogle Scholar
  31. 31.
    C.V.V.M. Gopi, M. Venkata-Haritha, H. Seo, S. Singh, S.-K. Kim, M. Shiratani, H.-J. Kim, Dalton Trans. 45, 8447 (2016)CrossRefGoogle Scholar
  32. 32.
    R.L. Van Meirhaeghe, L.M.O. Van den Berghe, W.H. Laflère, F. Cardon, Solid State Electron. 31, 1629 (1988)CrossRefGoogle Scholar
  33. 33.
    Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, C. Zhu, S. Yang, ACS Appl. Mater. Interfaces 7, 28466 (2015)CrossRefGoogle Scholar
  34. 34.
    D. Pareek, K.R. Balasubramaniam, P. Sharma, Mater. Charact. 103, 42 (2015)CrossRefGoogle Scholar
  35. 35.
    S.C. Riha, B.A. Parkinson, A.L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009)CrossRefGoogle Scholar
  36. 36.
    J. Chen, Q. Chen, Y. Ni, Y. Yamaguchi, T. Wang, Z. Jia, X. Dou, S. Zhuang, J. Sol-Gel. Sci. Technol. 75, 25 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, C.-S. Lee, J. Phys. Chem. C 116, 19718 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Xu, X. Yang, T.-L. Wong, C.-S. Lee, Nanoscale 4, 6537 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringS.V. National Institute of TechnologySuratIndia

Personalised recommendations