Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18144–18150 | Cite as

Enhanced stability and efficiency of Sn containing perovskite solar cell with SnCl2 and SnI2 precursors

  • Nitu Kumari
  • Sanjaykumar R. Patel
  • Jignasa V. GohelEmail author


Presence of toxic Pb and device stability are the main issues with perovskite solar cell. For Pb replacement, most likely substitute is Sn, which is a metal of group 14 (like Pb). Thus, in the present study, the amount of Pb is reduced and replaced by Sn. To achieve the replacement, use of SnCl2 is explored in addition to generally used precursor (SnI2), as the source of Sn. Molar ratio of PbI2:SnCl2/SnI2 is varied to get optimum performance of perovskite solar cell. Pt–FTO counter electrode is used in addition to spiro-MeTAD (as hole transport material). The power conversion efficiency of solar cells containing 2:2 molar ratio of PbI2:SnCl2 was enhanced to 10.10%, and PbI2:/SnI2 was enhanced to 10.61%. Without Sn addition (CH3NH3PbI3) the efficiency was only 7.39%. The clear enhancement of 37% (SnCl2) and 43% (SnI2) is highly encouraging, as it leads to less toxic and highly efficient solar cells at the same time. In addition, the percentage loss in power conversion efficiency of device prepared with SnCl2 (CH3NH3Pb0.5Sn0.5ICl2) was also superior (10 days).



The authors acknowledge the central facility, Indian Institute of Technology, Gandhinagar, Indian Institute of Technology, Bombay and Sardar Vallabhbhai National Institute of technology, Surat, Gujarat, India, for rendering analytical services for this work.


  1. 1.
    A. Phaometvarithorn, S. Chuangchotec, P. Kumnorkaewe, J. Wootthikanokkhan, Solid State Electron. 144, 7 (2018)CrossRefGoogle Scholar
  2. 2.
    M. Lanjewar, J.V. Gohel, Inorg. Nano Metal Chem. 47, 1090 (2017)CrossRefGoogle Scholar
  3. 3.
    J.V. Gohel, A.K. Jana, M. Singh, Appl. Phys. A Mater. Sci. Process. 123, 506 (2017)CrossRefGoogle Scholar
  4. 4.
    S.B. Patel, J.V. Gohel, J. Mater. Sci. Mater. Electron. 29, 5613 (2018)CrossRefGoogle Scholar
  5. 5.
    N. Kumari, S.R. Patel, J.V. Gohel, Rev. Adv. Mater. Sci. 53, 161 (2018)Google Scholar
  6. 6.
    J. Wei, F. Huang, S. Wang, L. Zhou, Y. Xin, P. Jin, Z. Cai, Z. Yin, Q. Pang, J.Z. Zhang, Mater. Res. Bull. 106, 35 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Baltakesmez, M. Biber, S. Tuzemen, J. Radiat. Res. Appl. Sci. 11, 124 (2018)CrossRefGoogle Scholar
  8. 8.
    X. Cao, L. Zhi, Y. Jia, Y. Li, K. Zhao, X. Cui, L. Ci, K. Ding, J. Wei, Electrochim. Acta 275, 1 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Deng, Y. Wang, Z. Cui, L. Li, C. Shi, Superlattices Microstruct. 117, 283 (2018)CrossRefGoogle Scholar
  10. 10.
    C. Raminafshar, V. Dracopoulos, M.R. Mohammadi, P. Lianos, Electrochim. Acta 276, 261 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Hao, H. Hao, F. Cheng, J. Li, H. Zhang, J. Dong, J. Xing, H. Liu, J. Cryst. Growth 491, 66 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. Jiang, W. Zhang, C. Lu, D. Ma, H. Liu, W. Yu, Y. Zhang, Q. Ma, Y. Zhang, Superlattices Microstruct. 118, 79 (2018)CrossRefGoogle Scholar
  13. 13.
    L. Lin, L. Jiang, Y. Qiu, Y. Yu, Superlattices Microstruct. 104, 167 (2017)CrossRefGoogle Scholar
  14. 14.
    H.S. Yoo, N.G. Park, Sol. Energy Mater. Sol. Cells 179, 57 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Zheng, L. Xiao, Y. Wang, H. Yang, Org. Electron. 58, 119 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  17. 17.
    W.S. Yang, B. Park, E.H. Jung, N.J. Jeon, Science 356, 1376 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Li, W. Sun, W. Yan, S. Ye, H. Rao, H. Peng, Z. Zhao, Z. Bian, Z. Liu, H. Zhou, C. Huang, Adv. Energy Mater. 6, 1 (2016)Google Scholar
  19. 19.
    H.L. Zhu, J. Xiao, J. Mao, H. Zhang, Y. Zhao, W.C.H. Choy, Adv. Funct. Mater. 27, 1605469 (2017)CrossRefGoogle Scholar
  20. 20.
    F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Nat. Photonics 8, 489 (2014)CrossRefGoogle Scholar
  21. 21.
    N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, G.E. Sadhanala, S.K. Eperon, M.B. Pathak, A. Johnston, L.M. Petrozza, H.J. Herz, Snaith, Energy Environ. Sci. 7, 3061 (2014)CrossRefGoogle Scholar
  22. 22.
    W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.G. Xiong, Y. Yan, Adv. Mater. 28, 9333 (2016)CrossRefGoogle Scholar
  23. 23.
    E.J. Yeom, S.S. Shin, W.S. Yang, S.J. Lee, W. Yin, D. Kim, J.H. Noh, T.K. Ahn, S. Il Seok, J. Mater. Chem. A 5, 79 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Shao, J. Liu, G. Portale, H.-H. Fang, G.R. Blake, G.H. Brink, L.J.A. Koster, M.A. Loi, Adv. Energy Mater. (2017). CrossRefGoogle Scholar
  25. 25.
    T. Bin Song, T. Yokoyama, S. Aramaki, M.G. Kanatzidis, ACS Energy Lett. 2, 897 (2017)CrossRefGoogle Scholar
  26. 26.
    Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, Z. Liu, Z. Bian, C. Huang, Adv. Sci. 4, 1700204 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Serrano-Lujan, N. Espinosa, T.T. Larsen-Olsen, J. Abad, A. Urbina, F.C. Krebs, Adv. Energy Mater. 5, 1 (2015)CrossRefGoogle Scholar
  28. 28.
    C.M. Tsai, N. Mohanta, C.Y. Wang, Y.P. Lin, Y.W. Yang, C.L. Wang, C.H. Hung, E.W.G. Diau, Angew. Chem. Int. Ed. 56, 13819 (2017)CrossRefGoogle Scholar
  29. 29.
    C.M. Tsai, H.P. Wu, S.T. Chang, C.F. Huang, C.H. Wang, S. Narra, Y.W. Yang, C.L. Wang, C.H. Hung, E.W.G. Diau, ACS Energy Lett. 1, 1086 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Kumari, J.V. Gohel, S.R. Patel, Optik 144, 422 (2017)CrossRefGoogle Scholar
  31. 31.
    N. Kumari, J.V. Gohel, S.R. Patel, Mater. Sci. Semicond. Process. 75, 149 (2018)CrossRefGoogle Scholar
  32. 32.
    N. Kumari, S.R. Patel, J.V. Gohel, Opt. Quantum Electron. 50, 180 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nitu Kumari
    • 1
  • Sanjaykumar R. Patel
    • 1
  • Jignasa V. Gohel
    • 1
    Email author
  1. 1.Department of Chemical EngineeringSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations