Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18128–18135 | Cite as

ZnO nanoparticles and polyaniline blend as an active layer for bulk heterojunction solar cell applications

  • Behnam Zeinalvand Farzin
  • Mojtaba Parhizkar
  • Hassan Bidadi
  • Farhang Abbasi
Article
  • 29 Downloads

Abstract

In this work, a facile and straightforward procedure was introduced to prepare a blend as an active layer for hybrid solar cell applications. The active layer consisting of a blend of ZnO nanoparticles (NPs) and polyaniline (PANI) dispersions was deposited by spin coating on ITO covered glasses. The current density–voltage characteristics were studied under AM1.5G standard illumination, without any encapsulation process. Also, the samples were studied using UV–Vis spectroscopy, energy dispersive X-ray spectroscopy (EDS) and field emission-scanning electron microscopy. The investigation is limited just to the active layer, so the cells were fabricated without any interlayer. The effect of various volume ratios of ZnO–NPs:PANI solutions, thickness and the annealing temperature of the active layer on the open circuit voltage and the short circuit current density of the cells were investigated. Moreover, the blending time of ZnO–NPs:PANI dispersions as a significant factor for achieving the optimum results were studied.

Notes

Acknowledgements

The financial support for this work from the University of Tabriz, Iran is gratefully acknowledged. The authors also like to thank Dr. M. Ghafouri at the Islamic Azad University of Shabestar, Iran for his invaluable cooperation in the initial experimental setup.

References

  1. 1.
    A.J. Heeger, Rev. Mod. Phys. 73, 681 (2001)CrossRefGoogle Scholar
  2. 2.
    Q. PANG, L.J. Zhao, J. HE, C.J. Liang, A.M. QIN, J.N. WANG, Bull. Mater. Sci. 36(7), 1161 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Masala, S.D. Gobbo, C. Borriello, V. Bizzarro, V. La Ferrara, M. Re, E. Pesce, C. Minarini, M. De Crescenzi, T. Di Luccio, J. Nanopart. Res. 13, 6537 (2011)CrossRefGoogle Scholar
  4. 4.
    R. Mastria, A. Pizzo, C. Giansante, D. Ballarini, L. Dominici, O. Inganäs, G. Gigli, J. Phys. Chem. C 119, 14972 (2015)CrossRefGoogle Scholar
  5. 5.
    W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Funct. Mater. 15, 1703 (2005)CrossRefGoogle Scholar
  6. 6.
    W.J.E. Beek, L.H. Sloof, M.M. Wienk, J.M. Kroon, R.A. Janssen, Adv. Funct. Mater. 16, 1112 (2006)CrossRefGoogle Scholar
  7. 7.
    W.J.E. Beek, M.M. Wienk, X. Yang, R.A. Janssen, J. Phys. Chem. B 109, 19 (2005)CrossRefGoogle Scholar
  8. 8.
    S. Ludwigs, P3HT Revisited—From Molecular Scale to Solar Cell Devices (Springer, Berlin, 2014)CrossRefGoogle Scholar
  9. 9.
    A. Sperlich, H. Kraus, C. Deibel, H. Blok, J. Schmidt, V. Dyakonov, J. Phys. Chem. B. 115, 13513 (2011)CrossRefGoogle Scholar
  10. 10.
    N. Sai, K. Leung, J. Zador, G. Henkelmana, Phys. Chem. Phys. 16, (2014)Google Scholar
  11. 11.
    D.C. Reynolds, D.C. Look, B. Jogi, Solid State Commun. 99(12), 873 (1996)CrossRefGoogle Scholar
  12. 12.
    T.K. Hong, N. Tripathy, H.J. Son, K.T. Ha, H.S. Jeong, Y.B. Hahn, J. Mater. Chem. B. 1, 2985 (2013)CrossRefGoogle Scholar
  13. 13.
    F. Jones, H. Tran, D. Lindberg, L. Zhao, M. Hupa, Energy Fuels 27, 5663 (2013)CrossRefGoogle Scholar
  14. 14.
    M.C. Larciprete, D. Heatle, A. Belardini, M. Bertolotti, F. Sarto, P. Gunter, Appl. Phys. B 82, 431 (2006)CrossRefGoogle Scholar
  15. 15.
    S.A. Kamaruddin, K.Y. Chan, H.K. Yow, M.Z. Sahdan, H. Saim, D. Knipp, Appl. Phys. A 104, 263 (2011)CrossRefGoogle Scholar
  16. 16.
    K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha, Int. J. Electrochem. Sci. 7, 11859 (2012)Google Scholar
  17. 17.
    N.R. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein, Nat. Nanotechnol. 2, 354 (2007)CrossRefGoogle Scholar
  18. 18.
    K. Lee, S. Cho, S.H. Park, A.J. Heeger, C.W. Lee, S.H. Lee, Nature 441, 65 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Wessling, Polymers 2, 786 (2010)CrossRefGoogle Scholar
  20. 20.
    H.S. Abdullah, A.I. Abbo, Int. J. Electrochem. Sci. 7, 10666 (2012)Google Scholar
  21. 21.
    J. Stejskal, P. Kratochvil, Synth. Met. 61, 225 (1993)CrossRefGoogle Scholar
  22. 22.
    J.C. Chiang, A.G. MacDiarmid, A.F. Richter N.L.D. Somasiri, in Conducting Polymers, ed. By L. Alcacer (Reidel, Dordrecht, 1987), p. 105Google Scholar
  23. 23.
    S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Chandrakanthi, M.A. Careem, Polym. Bull. 44, 101 (2000)CrossRefGoogle Scholar
  25. 25.
    H. Bejbouji, L. Vignau, J.L.M.T. Dang, E.M. Oualim, M. Harmouchi, A. Mouhsen, Sol. Energy Mater. Sol. Cells 94, 176 (2010)CrossRefGoogle Scholar
  26. 26.
    W.J.E. Beek, M.M. Wienk, R.J. Janssen, J. Mater. Chem. 15, 2985 (2005)CrossRefGoogle Scholar
  27. 27.
    S.B. Dkhil, M. Gaceur, W. Dachraoui, D. Hannani, S. Fall, F. Brunel, M. Wang, G. Poize, J. Mawyin, I. Shupyk, C. Martini, E. Shilova, F. Fages, T. Ishwara, J. Nelson, T. Watanabe, N. Yoshimoto, O. Margeat, C. Videlo t-Ackermann, J. Ackermann, Sol. Energy Mater. Sol. Cells 159, 608 (2017)CrossRefGoogle Scholar
  28. 28.
    M.G. Sadok Ben Dkhil, A.K. Diallo, Y. Didane, X. Liu, M. Fahlman, O. Margeat, J. Ackermann, C. Videlot-Ackermann, ACS Appl. Mater. Interfaces 9, 17256 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Kirchartz, T. Agostinelli, M.C. Quiles, W. Gong, J. Nelson, J. Phys. Chem. Lett. 3, 3470 (2012)CrossRefGoogle Scholar
  30. 30.
    S.B. Dkhil, M. Gaceur, A.K. Diallo, Y. Didane, X. Liu, M. Fahlman, O. Margeat, J. Ackermann, C. Videlot-Ackermann, Appl. Mater. Interfaces 9(20), 17256 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Alam, N.M. Alandis, A.A. Ansari, M.R. Shaik, J. Nanomater. 2013, 157810 (2013)Google Scholar
  32. 32.
    A. Olad, R. Nosrati, Res. Chem. Intermed. 38, 323 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Behnam Zeinalvand Farzin
    • 1
  • Mojtaba Parhizkar
    • 1
  • Hassan Bidadi
    • 1
  • Farhang Abbasi
    • 2
  1. 1.1Department of Condensed Matter Physics, Faculty of PhysicsUniversity of TabrizTabrizIran
  2. 2.Institute of Polymeric MaterialsSahand University of TechnologyTabrizIran

Personalised recommendations