Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18120–18127 | Cite as

Photocatalytic degradation of diverse organic dyes by sol–gel synthesized Cd2V2O7 nanostructures

  • Fatemeh Mazloom
  • Maryam Ghiyasiyan-Arani
  • Rozita Monsef
  • Masoud Salavati-Niasari
Article
  • 76 Downloads

Abstract

Cd2V2O7 nanostructures have been fabricated by Cd(NO3)2·4H2O, NH4VO3 as precursor and diverse carboxylic acids as both fuel and capping agent via the simple and novel sol–gel route. Effect of carboxylic acid type and calcination temperature were studied to reach optimum condition. The Cd2V2O7 nanostructures synthesized by citric acid as optimum size and morphology is composed of particles with the diameter in a range of 10–20 nm. The purity, crystalline phase, morphology, and optical properties were characterized by X-ray diffraction (XRD), Fourier transform IR (FT-IR), energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet–visible (UV–Vis) spectroscopy, and Photoluminescence. The photocatalytic property was performed using degradation of Erythrosine, Eriochrome Black T and Eosin Y aqueous solution under UV irradiation. The optimum removal efficiency is 77% in degradation of Eriochrome Black T.

Notes

Acknowledgements

Authors are grateful to the council of Iran National Science Foundation (INSF) and University of Kashan for supporting this work by Grant No. (159271/892290).

References

  1. 1.
    R.K. Selvan, A. Gedanken, P. Anilkumar, G. Manikandan, C. Karunakaran, Synthesis and characterization of rare earth orthovanadate (RVO4; R = La, Ce, Nd, Sm, Eu & Gd) nanorods/nanocrystals/nanospindles by a facile sonochemical method and their catalytic properties. J. Clust. Sci. 20(2), 291–305 (2009)CrossRefGoogle Scholar
  2. 2.
    J. Xu, C. Hu, G. Liu, H. Liu, G. Du, Y. Zhang, Synthesis and visible-light photocatalytic activity of NdVO4 nanowires. J. Alloy. Compd. 509(30), 7968–7972 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Rahimi-Nasrabadi, F. Ahmadi, A. Fosooni, Influence of capping agents additives on morphology of CeVO4 nanoparticles and study of their photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28(1), 537–542 (2017)Google Scholar
  4. 4.
    S. Verma, R. Gupta, K. Bamzai, Effect of mixing Ce3+ and Nd3+ ions in equimolar ratio on structural, optical and dielectric properties on pure cerium orthovanadate and neodymium orthovanadate. Mater. Res. Bull. 81, 71–84 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Ahmadi, M. Rahimi-Nasrabadi, M.A. Daneshmehr, M. Eghbali-Arani, Synthesis, characterization, and investigation of magnetic, photocatalytic and antibacterial properties of TbVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28(19), 14362–14368 (2017)Google Scholar
  6. 6.
    W.-B. Zhang, L.-B. Kong, X.-J. Ma, Y.-C. Luo, L. Kang, Design, synthesis and evaluation of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on nickel foam as self-supported electrodes for asymmetric supercapacitors. J. Power Sources 269, 61–68 (2014)CrossRefGoogle Scholar
  7. 7.
    F. Liu, Y. Guan, M. Dai, H. Zhang, Y. Guan, R. Sun et al., High performance mixed-potential type NO2 sensors based on three-dimensional TPB and Co3V2O8 sensing electrode. Sens. Actuators B 216, 121–127 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Yang, D. Xia, Z. Wang, Y. Chen, A novel anode material of Fe2VO4 for high power Lithium ion battery. Mater. Lett. 63(1), 5–7 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, Novel Schiff base ligand-assisted in-situ synthesis of Cu3V2O8 nanoparticles via a simple precipitation approach. J. Mol. Liq. 216, 59–66 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Ghiyasiyan-Arani, M. Masjedi-Arani, Size controllable synthesis of cobalt vanadate nanostructures with enhanced photocatalytic activity for the degradation of organic dyes. J. Mol. Catal. A: Chem. 425, 31–42 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Ghiyasiyan-Arani, M. Salavati-Niasari, M. Masjedi-Arani, F. Mazloom, An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents. J. Mater. Sci.: Mater. Electron. 29(1), 474–485 (2018)Google Scholar
  12. 12.
    F. Mazloom, M. Masjedi-Arani, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 214, 46–53 (2016)CrossRefGoogle Scholar
  13. 13.
    Henglein, Mechanism of reactions on colloidal microelectrodes and sizequantization effects. Top. Curr. Chem. 143, 113–180 (1988)CrossRefGoogle Scholar
  14. 14.
    O. Elbanna, P. Zhang, M. Fujitsuka, T. Majima, Facile preparation of nitrogenand fluorine codoped TiO2 mesocrystal with visible light photocatalyticactivity. Appl. Catal. B: Environ. (2016)  https://doi.org/10.1016/j.apcatb.2016.03.053 CrossRefGoogle Scholar
  15. 15.
    Y. Cao, X. Li, Z. Bian, A. Fuhr, D. Zhang, J. Zhu, Highly photocatalytic activity ofbrookite/rutile TiO2 nanocrystals with semi-embedded structure. Appl. Catal. B: Environ. 180, 551–558 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Au, W. Zhang, H. Wan, Preparation and characterization of rare earth orthovanadates for propane oxidative dehydrogenation. Catal. Lett. 37(3–4), 241–246 (1996)CrossRefGoogle Scholar
  17. 17.
    M. Ghiyasiyan-Arani, M. Salavati-Niasari, S. Naseh, Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrason. Sonochem. 39, 494–503 (2017)CrossRefGoogle Scholar
  18. 18.
    S. Mahapatra, S.K. Nayak, G. Madras, T. Guru Row, Microwave synthesis and photocatalytic activity of nano lanthanide (Ce, Pr, and Nd) orthovanadates. Ind. Eng. Chem. Res. 47(17), 6509–6516 (2008)CrossRefGoogle Scholar
  19. 19.
    X. Weng, Q. Yang, L. Wang, L. Xu, X. Sun, J. Liu, General synthesis and self-assembly of lanthanide orthovanadate nanorod arrays. CrystEngComm 15(47), 10230–10237 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalytic activity. J. Mater. Sci.: Mater. Electron. 27(5), 4871–4878 (2016)Google Scholar
  21. 21.
    M. Ghiyasiyan-Arani, M. Masjedi-Arani, D. Ghanbari, S. Bagheri, M. Salavati-Niasari, Novel chemical synthesis and characterization of copper pyrovanadate nanoparticles and its influence on the flame retardancy of polymeric nanocomposites. Sci. Rep. 6, 25231 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Mahdiani, A. Sobhani, M. Salavati-Niasari, Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: sol-gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185, 140–148 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Mahdiani, A. Sobhani, F. Ansari, M. Salavati-Niasari, Lead hexaferrite nanostructures: green amino acid sol–gel auto-combustion synthesis, characterization and considering magnetic property. J. Mater. Sci.: Mater. Electron. 28(23), 17627–17634 (2017)Google Scholar
  24. 24.
    S. Bayat, A. Sobhani, M. Salavati-Niasari, Co2SiO4 nanostructures/nanocomposites: synthesis and investigations of optical, magnetic, photocatalytic, thermal stability and flame retardant properties. J. Mater. Sci.: Mater. Electron. 29(9), 7077–7089 (2018)Google Scholar
  25. 25.
    R. Mohassel, A. Sobhani, M. Goudarzi, M. Salavati-Niasari, Amino acid modified combustion synthesis, characterization and investigation of magnetic, optical and photocatalytic properties of Gd2CoMnO6 nanostructures. J. Alloy. Compd. 753, 615–621 (2018)CrossRefGoogle Scholar
  26. 26.
    H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures (Wiley, New York, 1954)Google Scholar
  27. 27.
    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Novel route to synthesize nanocrystalline nickel titanate in the presence of amino acids as a capping agent. J. Mater. Sci.: Mater. Electron. 27(11), 11873–11878 (2016)Google Scholar
  28. 28.
    M. Rahimi-Nasrabadi, Strontium molybdate nanostructures: synthesis of different shapes through a new approach and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 28(2), 2200–2205 (2017)Google Scholar
  29. 29.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, A.R. Banan, F. Ahmadi, Synthesis procedure optimization and characterization of europium(III) tungstate nanoparticles. J. Mol. Struct. 1074, 85–91 (2014)CrossRefGoogle Scholar
  30. 30.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Novrouzi, F. Faridbod, M. Sadeghpour Karimi, Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition. J. Mater. Sci.: Mater. Electron. 28(4), 3325–3336 (2017)Google Scholar
  31. 31.
    J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15(2), 627–637 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fatemeh Mazloom
    • 1
  • Maryam Ghiyasiyan-Arani
    • 2
  • Rozita Monsef
    • 1
  • Masoud Salavati-Niasari
    • 1
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Young Researchers and Elite Club, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations