Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18111–18119 | Cite as

Synthesis of silver and sulphur codoped TiO2 nanoparticles for photocatalytic degradation of methylene blue

  • Mehala Kunnamareddy
  • Barathi Diravidamani
  • Ranjith Rajendran
  • Boobas Singaram
  • Krishnakumar Varadharajan
Article
  • 125 Downloads

Abstract

In the present work, silver and sulphur codoped TiO2 (Ag–S/TiO2) photocatalysts were effectively prepared by sol–gel technique. The prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray analysis (EDX), Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance UV–Vis spectroscopy (UV-DRS) and photoluminescence (PL). The XRD patterns consisted of anatase crystalline phases and the particle size and shape of the prepared samples were observed by SEM and HR-TEM. The presence of doping ions was confirmed by EDX analysis, the decreased band-gap energy of Ag–S codoped TiO2 nanoparticles was investigated by UV-DRS. The decreased in the intensity of Ag–S codoped TiO2 was absorbed due to the lower separation of electron–hole pairs were confirmed by PL spectrum. The Ag–S codoped TiO2 showed higher photocatalytic activity than pure and single-doped TiO2 in the photodegradation of methylene blue (MB) aqueous solution under visible light irradiation. The given work was a good model to associate the considering of the synergistic effect of metal and non-metal codoped TiO2 in the photocatalysis and photo electrochemistry.

Notes

Acknowledgements

The authors acknowledge Department Nanoscience and nanotechnology, Karunya University for providing the characterization facilities to carry out my research work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_9922_MOESM1_ESM.docx (189 kb)
Supplementary material 1 (DOCX 189 KB)

References

  1. 1.
    M. Pudukudy, Z. Yaakob, Superlattice Microstruct. 63, 47–57 (2013)CrossRefGoogle Scholar
  2. 2.
    R. Ramesh, M. Pudukudy, S. Sohila, Z. Yaakob, M.S.A. Rahaman, J. Mater. Sci.: Mater. Electron. 25, 4755–4759 (2014)Google Scholar
  3. 3.
    M. Pudukudy, Z. Yaakob, J. Clust. Sci. 26, 1187–1201 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Prabhu, M. Pudukudy, S. Sohila, S. Harish, M. Navaneethan, D. Navaneethan, R. Ramesh, Y. Hayakawa, Opt. Mater. 79, 186–195 (2018)CrossRefGoogle Scholar
  5. 5.
    B. Singaram, J. Jeyaram, R. Rajendran, P. Arumugam, K. Varadharajan, Ionics (2018).  https://doi.org/10.1007/s11581-018-2628-x CrossRefGoogle Scholar
  6. 6.
    V. Krishnakumar, R. Ranjith, J. Jayaprakash, S. Boobas, J. Venkatesan, J. Mater. Sci.: Mater. Electron. 28, 13990–13999 (2017)Google Scholar
  7. 7.
    M. Pudukudy, Z. Yaakob, Chem. Pap. 68, 1087–1096 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Ranjith, V. Krishnakumar, J. Venkatesan, S. Boobas, J. Jayaprakash, Appl. Nanosci. 8, 61–78 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, A. Fujishima, M. Jin, A.V. Emeline, T. Murakami, J. Phys. Chem. B. 110, 25142–25148 (2006)CrossRefGoogle Scholar
  10. 10.
    B. Singaram, K. Varadharajan, J. Jeyaram, R. Rajendran, V. Jayavel, J. Photochem. Photobiol. A. 349, 91–99 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Madarász, A. Braileanu, M. Crisan, M. Raileanu, G. Pokol, J. Therm. Anal. Calorim. 97, 265 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Crişan, A. Braileanu, D. Crişan, M. Raileanu, N. Dragan, D. Mardare, M. Dumitru, J. Therm. Anal. Calorim. 92, 7–13 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Skubiszewska-Zięba, B. Charmas, R. Leboda, V.A. Tertykh, V.V. Yanishpolskii, J. Therm. Anal. Calorim. 108, 1085–1092 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663–671 (1995)CrossRefGoogle Scholar
  15. 15.
    M.H. Habibi, N. Talebian, J.H. Choi, Dyes Pigm. 73, 103–110 (2007)CrossRefGoogle Scholar
  16. 16.
    E. Santacesaria, M. Tonello, G. Storti, R.C. Pace, S. Carra, J. Colloid Interface Sci. 111, 44–53 (1986)CrossRefGoogle Scholar
  17. 17.
    M.H. Habibi, N. Talebian, Dyes Pigm. 73, 186–194 (2007)CrossRefGoogle Scholar
  18. 18.
    Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976–6982 (2007)CrossRefGoogle Scholar
  19. 19.
    R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Appl. Catal. B. 126, 47–54 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Dashora, N. Patel, D.C. Kothari, B.L. Ahuja, A. Miotello, Sol. Energy Mater. Sol. Cells. 125, 120–126 (2014)CrossRefGoogle Scholar
  21. 21.
    W.C. Lu, H.D. Nguyen, C.Y. Wu, K.S. Chang, M. Yoshimura, J. Appl. Phys. 115, 144305 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Zhang, Ultrason. Sonochem. 19, 767–771 (2012)CrossRefGoogle Scholar
  23. 23.
    Y. Gai, J. Li, S.S. Li, J.B. Xia, S.H. Wei, Phys. Rev. 102, 036402 (2009)Google Scholar
  24. 24.
    Y. Wu, J. Zhang, L. Xiao, F. Chen, Appl. Surf. Sci. 256, 4260–4268 (2010)CrossRefGoogle Scholar
  25. 25.
    X. Shu, J. He, D. Chen, Ind. Eng. Chem. Res. 47, 4750–4753 (2008)CrossRefGoogle Scholar
  26. 26.
    K. Kabra, R. Chaudhary, R.L. Sawhney, Ind. Eng. Chem. Res. 43, 7683–7696 (2004)CrossRefGoogle Scholar
  27. 27.
    R. Daghrir, P. Drogui, D. Robert, Ind. Eng. Chem. Res. 52, 3581–3599 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Burda, Y. Lou, X. Chen, A.C. Samia, J. Stout, J.L. Gole, Nano Lett. 3, 1049–1051 (2003)CrossRefGoogle Scholar
  29. 29.
    S. Zhang, L. Song, Catal. Commun. 10, 1725–1729 (2009)CrossRefGoogle Scholar
  30. 30.
    F. Wei, L. Ni, P. Cui, J. Hazard. Mater. 156, 135–140 (2008)CrossRefGoogle Scholar
  31. 31.
    J. Xu, Y. Ao, D. Fu, Appl. Surf. Sci. 256, 884–888 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Kubacka, G. Colón, M. Fernández-García, Appl. Catal. B 95, 238–244 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Song, J. Zhou, J. Bao, Y. Feng, J. Am. Ceram. Soc. 91, 1369–1371 (2008)CrossRefGoogle Scholar
  34. 34.
    X. Sun, H. Liu, J. Dong, J. Wei, Y. Zhang, Catal. Lett. 135, 219–225 (2010)CrossRefGoogle Scholar
  35. 35.
    D. Zhang, Transit. Met. Chem. 35, 933–938 (2010)CrossRefGoogle Scholar
  36. 36.
    S.K. Biswas, A. Pathak, N.K. Pramanik, D. Dhak, P. Pramanik, Ceram. Int. 34, 1875–1883 (2008)CrossRefGoogle Scholar
  37. 37.
    F. Zhou, K. Liang, J. Rare Earths 24, 68–70 (2006)CrossRefGoogle Scholar
  38. 38.
    X. Yang, C. Cao, K. Hohn, L. Erickson, R. Maghirang, D. Hamal, K. Klabunde, J. Catal. 252, 296–302 (2007)CrossRefGoogle Scholar
  39. 39.
    M. Hamadanian, A. Reisi-Vanani, M. Behpour, A.S. Esmaeily, Desalination 281, 319–324 (2011)CrossRefGoogle Scholar
  40. 40.
    F. Tian, C. Liu, J. Phys. Chem. B. 110, 17866–17871 (2006)CrossRefGoogle Scholar
  41. 41.
    Y. Cui, H. Du, L. Wen, Solid State Commun. 149, 634–637 (2009)CrossRefGoogle Scholar
  42. 42.
    T. Lindgren, J.M. Mwabora, E. Avendaño, J. Jonsson, A. Hoel, C.G. Granqvist, S.E. Lindquist, J. Phys. Chem. B. 107, 5709–5716 (2003)CrossRefGoogle Scholar
  43. 43.
    H.K. Park, D.K. Kim, C.H. Kim, J. Am. Ceram. Soc. 80, 743–749 (1997)CrossRefGoogle Scholar
  44. 44.
    X. Chen, Y.B. Lou, A.C. Samia, J.L. Burda, C. Gole, Adv. Funct. Mater. 15, 41–49 (2005)CrossRefGoogle Scholar
  45. 45.
    T.C. Jagadale, S.P. Takale, R.S. Sonawane, H.M. Joshi, S.I. Patil, B.B. Kale, S.B. Ogale, J. Phys. Chem. C 112, 14595–14602 (2008)CrossRefGoogle Scholar
  46. 46.
    A.R. Ocwelwang, L. Tichagwa, Int. J. Adv. Res. Chem. Sci. 1(2), 28–37 (2014)Google Scholar
  47. 47.
    A.J. Maira, J.M. Coronado, V. Augugliaro, K.L. Yeung, J.C. Conesa, J. Soria, J. Catal. 202, 413–420 (2001)CrossRefGoogle Scholar
  48. 48.
    A. Hamad, L. Li, Z. Liu, X.L. Zhong, H. Liu, T. Wang, RSC Adv. 5, 72981–72994 (2015)CrossRefGoogle Scholar
  49. 49.
    G. Cheng, F. Xu, F.J. Stadler, R. Chen, RSC Adv. 5, 64293–64298 (2015)CrossRefGoogle Scholar
  50. 50.
    Y.L. Dong, J.L. Won, J.S. Sung, H. Jung, S. Yang, Comput. Mater. Sci. 30, 383–388 (2004)CrossRefGoogle Scholar
  51. 51.
    J. Liqiang, S. Xiaojun, X. Baifu, W. Baiqi, C. Weimin, F. Honggang, J. Solid State Chem. 177, 3375–3382 (2004)CrossRefGoogle Scholar
  52. 52.
    X. Liu, C. Nan, L. Yuxiu, D. Dongyang, X. Xinxin, W. Yude, Sci. Rep. 6, 39531 (2016)CrossRefGoogle Scholar
  53. 53.
    S. Navarro, J. Fenoll, N. Vela, E. Ruiz, G. Navarro, Chem. Eng. J. 167, 42–49 (2011)CrossRefGoogle Scholar
  54. 54.
    A.J. Hoffman, E.R. Carraway, M.R. Hoffmann, Environ. Sci. Technol. 28, 776–785 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mehala Kunnamareddy
    • 1
  • Barathi Diravidamani
    • 1
  • Ranjith Rajendran
    • 2
  • Boobas Singaram
    • 3
  • Krishnakumar Varadharajan
    • 2
  1. 1.Department of PhysicsN.K.R. Govt. Arts College for WomenNamakkalIndia
  2. 2.Advanced Materials Laboratory, Department of PhysicsPeriyar UniversitySalemIndia
  3. 3.Department of PhysicsPeriyar University Constituent College of Arts and ScienceDharmapuriIndia

Personalised recommendations