Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18088–18097 | Cite as

Increased homogenous clusters in superconducting paths with diffusion of optimum Ni impurities into Bi-2223 crystal

  • T. Turgay
  • G. Yildirim
  • Y. Zalaoglu
Article
  • 61 Downloads

Abstract

This study deals with variations of electrical and superconducting features of Bi-2223 superconducting materials exposed to Ni impurity diffusion at different annealing temperatures (650 °C ≤ T ≤ 850 °C) by temperature-dependent resistivity measurements. It is found that the characteristic properties improve with annealing temperature up to 700 °C as a result of enhancement in the truly-metallic characteristics, interaction quality, formation of Cooper-pairs and overlapping of Cu-3d and O-2p wave functions. Similarly, the optimum annealing temperature of 700 °C diminishes the omnipresent flaws and structural defects. Additionally, we design a strong theory (Percolation) to discuss the role of nickel impurities on fundamental aspects of material science and physical quantities as regards stabilization of superconductivity in the homogeneous regions and formation of superconducting clusters in the paths for the first time. Further, we develop an empirical relationship between the structural problems and transition temperatures to obtain a superconductor exhibiting the highest electrical and superconducting features.

Notes

Acknowledgements

This study is partially supported by Abant Izzet Baysal University Scientific Research Project Coordination Unit (Project No.: 2014.09.05.685).

References

  1. 1.
    H.K. Onnes, Koninklijke Nederlandsche Akademie van Wetenschappen Proc. 14, 113 (2011)Google Scholar
  2. 2.
    S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Physica C 463, 464 (2007)CrossRefGoogle Scholar
  3. 3.
    M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, Physica C 372, 1657 (2002)CrossRefGoogle Scholar
  4. 4.
    J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, Appl. Supercond. 3, 469 (1995)CrossRefGoogle Scholar
  5. 5.
    N.K. Saritekin, M. Pakdil, E. Bekiroglu, G. Yildirim, J. Alloys Compd. 688, 637 (2016)CrossRefGoogle Scholar
  6. 6.
    B. Batlogg, Solid State Commun. 107, 639 (1998)CrossRefGoogle Scholar
  7. 7.
    F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Supercond. Sci. Technol. 25, 014007 (2012)CrossRefGoogle Scholar
  8. 8.
    H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, J. Appl. Phys. 111, 103910 (2012)CrossRefGoogle Scholar
  9. 9.
    K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, Curr. Appl. Phys. 11, 1020 (2011)CrossRefGoogle Scholar
  10. 10.
    W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications (Wiley-VCH Verlag, Weinhei, 2004)CrossRefGoogle Scholar
  11. 11.
    G. Yildirim, J. Alloys Compd. 699, 247 (2017)CrossRefGoogle Scholar
  12. 12.
    T.A. Coombs, IEEE Trans. Appl. Supercond. 21, 3581 (2011)CrossRefGoogle Scholar
  13. 13.
    M.E. Takayama, Chem. Mater. 10, 2686 (1998)CrossRefGoogle Scholar
  14. 14.
    H. Yamauchi, M. Karppinen, Supercond. Sci. Techol. 13, R33 (2000)CrossRefGoogle Scholar
  15. 15.
    J. Karpinski, G.I. Meijer, H. Schwer, R. Molinski, E. Kopnin, K. Conder, M. Angst, J. Jun, S. Kazakov, A. Wisniewski, R. Puzniak, J. Hofer, V. Alyoshin, A. Sin, Supercond. Sci. Technol. 12, R153 (1999)CrossRefGoogle Scholar
  16. 16.
    H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L209 (1988)CrossRefGoogle Scholar
  17. 17.
    C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Deslandes, J. Provost, B. Raveau, Z. Phys. B 68, 421 (1987)CrossRefGoogle Scholar
  18. 18.
    A.M. Hermann, J.V. Yakhmi (eds.), Thallium-Based High-Temperature Superconductors (Marcel Dekker, New York, 1994)Google Scholar
  19. 19.
    C.J. Poole, H.A. Farach, R. Creswick, Superconductivity (Academic Press, New York, 1995)Google Scholar
  20. 20.
    R.M. Hazen, C.T. Prewitt, R.J. Angel, N.L. Ross, L.W. Finger, C.G. Hadidiacos, D.R. Veblen, P.J. Heaney, P.H. Hor, R.L. Meng, Y.Y. Sun, Y.Q. Wang, Y.Y. Xue, Z.J. Huang, L. Gao, J. Bechtold, C.W. Chu, Phys. Rev. Lett. 60, 1174 (1988)CrossRefGoogle Scholar
  21. 21.
    S.E. Mousavi Ghahfarokhi, M. Zargar, Shoushtari, Physica B 405, 4643 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Maljuk, C.T. Lin, Crystals 6, 62 (2016)CrossRefGoogle Scholar
  23. 23.
    I. Matsubara, H. Tanigawa, T. Ogura, H. Yamashita, M. Kinoshita, T. Kawai, Phys. Rev. B 45, 7414 (1992)CrossRefGoogle Scholar
  24. 24.
    J.M. Tarascon, W.R. Mckinnon, P. Barboux, D.M. Hwang, B.G. Bagley, L.H. Greene, G.W. Hull, Y. Lepage, N. Stoffel, M. Giroud, Phys. Rev. B 38, 8885 (1988)CrossRefGoogle Scholar
  25. 25.
    N.K. Saritekin, H. Bilge, M.F. Kahraman, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, AIP Conf. Proc. 1722, 140002 (2016)CrossRefGoogle Scholar
  26. 26.
    N.K. Saritekin, M.F. Kahraman, H. Bilge, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, AIP Conf. Proc. 1722, 140007 (2016)CrossRefGoogle Scholar
  27. 27.
    G. Yildirim, J. Alloys Compd. 745, 100 (2018)CrossRefGoogle Scholar
  28. 28.
    F. Rullier-Albenque, P.A. Vieillefond, H. Alloul, A.W. Tyler, P. Lejay, J.F. Marucco, Europhys. Lett. 50, 81 (2000)CrossRefGoogle Scholar
  29. 29.
    M.L. Li, Y. Zhang, Y. Li, Y. Qi, J. Non-Cryst. Solids 356, 2831 (2010)CrossRefGoogle Scholar
  30. 30.
    N.Y. Chen, R. Jonker, V.C. Matijasevic, H.M. Jaeger, J.E. Mooij, Appl. Phys. Lett. 67, 133 (1995)CrossRefGoogle Scholar
  31. 31.
    M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, J. Mater. Sci: Mater. Electron. 24, 896 (2013)Google Scholar
  32. 32.
    D.M. Rao, T. Somaiah, V. Haribabu, Y.C. Venudhar, Cryst. Res. Technol. 28, 285 (1993)CrossRefGoogle Scholar
  33. 33.
    A. Ianculescu, M. Gartner, B. Despax, V. Bley, T. Lebey, R. Gavrila, M. Modreanu, Appl. Surf. Sci. 253, 344 (2006)CrossRefGoogle Scholar
  34. 34.
    S.S. Ma, H. Xu, X.L. Liu, H.Y. Wang, Acta Phys. Sin. 56, 2852 (2007)Google Scholar
  35. 35.
    Y. Zalaoglu, G. Yildirim, J. Mater. Sci: Mater. Electron. 28, 17693 (2017)Google Scholar
  36. 36.
    M. Dogruer, Y. Zalaoglu, O. Gorur, O. Ozturk, G. Yildirim, A. Varilci, E. Yucel, C. Terzioglu, J. Mater. Sci: Mater. Electron. 24, 776 (2013)Google Scholar
  37. 37.
    R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloys Compd. 493, 11 (2010)CrossRefGoogle Scholar
  38. 38.
    T. Kucukomeroglu, E. Bacaksiz, C. Terzioglu, A. Varilci, Thin Solid Films 516, 2913 (2008)CrossRefGoogle Scholar
  39. 39.
    D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors (World Scientific, Singapore, 1990)Google Scholar
  40. 40.
    P. Pureur, R.M. Costa, P. Rodrigues Jr., J.V. Kunzler, J. Schaf, L. Ghivelder, J.A. Campá, I. Rasines, Phys. Rev. B 47, 11420 (1993)CrossRefGoogle Scholar
  41. 41.
    G. Deutscher, O. Entinwohlman, S. Fishman, Y. Shapira, Phys. Rev. B 21, 5041 (1980)CrossRefGoogle Scholar
  42. 42.
    Y.M. Strenlniker, A. Frydman, S. Havlin, Phys. Rev. B 76, 224528 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Fine Arts ArchitectureSakarya UniversitySakaryaTurkey
  2. 2.Department of Mechanical EngineeringAbant Izzet Baysal UniversityBoluTurkey
  3. 3.Department of PhysicsOsmaniye Korkut Ata UniversityOsmaniyeTurkey

Personalised recommendations