Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18082–18087 | Cite as

Nanopatterning of crystalline silicon with anodized aluminum oxide templates

  • W. T. Chao
  • Joel Y. Y. Loh
  • U. Erb
  • N. P. Kherani
Article
  • 204 Downloads

Abstract

A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopores with anisotropic etching on crystalline silicon through reactive ion etching, with the purpose of enhancing the anti-reflection of silicon substrates. A unique two-step anodizing method was introduced to create high quality nano-channels and it was demonstrated that this process is superior over a one-step anodization approach. It was found that pore to pore distance and pore density can be tuned by changing the applied potential within a range of 10–80 V. Optical characterization of the nanopatterned silicon showed an average 10% reduction in reflection in the UV–Vis wavelength range.

Notes

Acknowledgements

The support of the Ontario Research Fund—Research Excellence program and Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

  1. 1.
    V.E. Ferry, M.A. Verschuuren, M.C. van Lare, R.E.I. Schropp, H.A. Atwater, A. Polman, Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar. Nano Lett. 11(10), 4239–4245 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Mavrokefalos, S.E. Han, S. Yerci, M.S. Branham, G. Chen, Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12(6), 2792–2796 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Chutinan, S. John, Light trapping and absorption optimization in certain thin-film photonic crystal architectures. Phys. Rev. A 78(2), 023825-1–023825-15 (2008)Google Scholar
  4. 4.
    D.M. Callahan, J.N. Munday, H.A. Atwater, Solar cell light trapping beyond the ray optic limit. Nano Lett. 12(1), 214–218 (2012)CrossRefGoogle Scholar
  5. 5.
    P.G. O’Brien, N.P. Kherani, A. Chutinan, G.A. Ozin, S. John, S. Zukotynski, Silicon photovoltaics using conducting photonic crystal back-reflectors. Adv. Mater. 20(8), 1577–1582 (2008)CrossRefGoogle Scholar
  6. 6.
    H. Masuda, M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. Part 2 Lett. 35, L126–L129 (1996)CrossRefGoogle Scholar
  7. 7.
    H.-P. Wang, T. Kun-Tong, L. Kun-Yu, W. Tzu-Chiao, W. Yuh-Lin, J.-H. He, Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting, Opt. Express 20(S1), A94–A103 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Ono, M. Saito, H. Asoh, Self-ordering of anodic porous alumina induced by local current concentration: burning, Electrochem. Solid-State Lett. 7(7), B21–B24 (2004)CrossRefGoogle Scholar
  9. 9.
    O. Sanz, J.F. Echave, J.A. Odriozola, M. Montes, Aluminum anodization in oxalic acid: controlling the texture of Al2O3/Al monoliths for catalytic applications. Ind. Eng. Chem. Res. 50, 2117–2125 (2011)CrossRefGoogle Scholar
  10. 10.
    N.Q. Zhao, X. Jiang, C.S. Shi, J.J. Li, Z.G. Zhao, X.W. Du, Effects of anodizing conditions on anodic alumina structure. J. Mater. Sci. 42, 3878–3882 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Sulka. Highly Ordered Anodic Porous Alumina Formation by Self-organized Anodizing, ed. by A. Eftekhari. Nanostructured Materials in Electrochemistry (Wiley, Weinheim, 2008)Google Scholar
  12. 12.
    G.E.J. Poinern, N. Ali, D. Fawcett, Progress in nano-engineered anodic aluminum oxide membrane development. Materials 4, 487–526 (2011)CrossRefGoogle Scholar
  13. 13.
    B.B. Deka, M. Anwesha, M. Abha, Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector. Nanotechnology 27, 9 (2016)Google Scholar
  14. 14.
    O. Jessensky, F. Müller, U. Gösele, Self-organized formation in hexagonal pore structures in anodic alumina. J. Elecrochem. Soc. 145, 3735–3740 (1998)CrossRefGoogle Scholar
  15. 15.
    H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216), 1466–1468 (1995)CrossRefGoogle Scholar
  16. 16.
    P. Wurfel, U. Wurfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, 2nd edn. (Wiley, Weinheim, 2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Electrical and Computing EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations