Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18051–18058 | Cite as

Bias voltage effect on the dielectric properties of organic–inorganic blend SiNWs elaborated via metal assisted chemical etching

  • Hamza SaidiEmail author
  • Walid Aloui
  • Abdelaziz Bouazizi


The electrical proprieties of poly (3-hexylthiophene): Silicon nanowires (P3HT: SiNWs) nanocomposite was investigated by impedance spectroscopy technique. The effect of bias voltage under and without illumination was discussed. Indeed, the imaginary part of the impedance shows a high relaxation frequency related to Maxwell–Wagner–Sillars (MWS) polarization. The relaxation time was found in the range of ms and it was shifted towards high frequency with increasing the bias voltage especially at 0.6 V At bias voltage equal to Vth and under illumination, the conductivity increases because the trapped charges acquire the necessary energy to escape from the interface and the hopping time found was reduced. This indicates a change of the conduction mechanism. The Cole–Cole diagram was excellently fitted through an equivalent circuit including a chemical capacitance Cµ, a contact electrical resistance Rs and recombination resistance Rp.


  1. 1.
    G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties. J. Mater. Sci. 28, 576–581 (2017)Google Scholar
  2. 2.
    A. Feng, G. Wu, Y. Wang, C. Pan, Synthesis, preparation and mechanical property of wood fiber-reinforced poly(vinyl chloride) composites. J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Feng, Z. Jia, Q. Yu, H. Zhang, G. Wu, Preparation and characterization of carbon nanotubes/carbon fiber/phenolic composites on mechanical and thermal conductivity properties. Nano 13, 1850037–1850047 (2018)Google Scholar
  4. 4.
    Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. Nano 13, 1830005–1830018 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Chapel, S.B. Dkhil, S. Therias, J.-L. Gardettea, D. Hannani, G. Poize, M. Gaceur, S.M. Shah, P. Wong-Wah-Chung, C. Videlot-Ackermann, O. Margeat, A. Rivaton, J. Ackermann, Effect of ZnO nanoparticles on the photochemical and electronic stability of P3HT used in polymer solar cells. Sol. Energy Mater. Sol. Cells 155, 79–87 (2016)CrossRefGoogle Scholar
  6. 6.
    S.V. Bhat, A. Govindaraj, C.N.R. Rao, Hybrid solar cell based on P3HT–ZnO nanoparticle blend in the inverted device configuration. Sol. Energy Mater. Sol. Cells 95, 2318–2321 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. J. Mater. Sci.: Mater. Electron. 28, 6544–6551 (2017)Google Scholar
  8. 8.
    K.O. Aghmiyoni, V. Ahmadi, F. Arabpour Roghabadi, Performance improvement of P3HT:CdSe hybrid solar cell by modifying hole injection layer. Proc. Mater. Sci. 11, 639–643 (2015)CrossRefGoogle Scholar
  9. 9.
    S.B. Dkhil, M. Gaceur, W. Dachraoui, D. Hannani, S. Fall, F. Brunel, M. Wang, G. Poize, J. Mawyin, I. Shupyk, C. Martini, E. Shilova, F. Fages, T. Ishwara, J. Nelson, T. Watanabe, N. Yoshimoto, O. Margeat, C. Videlot-Ackermann, J. Ackermann, P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 159, 608–616 (2017)CrossRefGoogle Scholar
  10. 10.
    G. Wu, Y. Wang, K. Wang, A. Feng, The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv. 104, 102542–102548 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Woo, J.K. Jeong, K.H. Lyu, S. Jeong, J.H. Sim, W.H. Kim, Y.S. Han, Y. Kim, Hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays: The effect of silicon conductivity. Phys. B 407, 3059–3062 (2012)CrossRefGoogle Scholar
  12. 12.
    P.-T. Tsai, M.-C. Li, Y.-C. Lai, W.-H. Tseng, Chih-I. Wu, S.-H. Chen, Y.-C. Lin, Y.-C. Chen, R.-C. Hsiao, S.-F. Horng, P. Yu, H.-F. Meng, Solution p-doped fluorescent polymers for enhanced charge transport of hybrid organic-silicon nanowire photovoltaics. Org. Electron. 34, 246–253 (2016)CrossRefGoogle Scholar
  13. 13.
    T. Jeon, B. Geffroy, D. Tondelier, L. Yu, P. Jegou, B. Jousselme, S. Palacin, P.R. ICabarrocas, Y. Bonnassieux, Effects of acid-treated silicon nanowires on hybrid solar cells performance. Sol. Energy Mater. Sol. Cells 117, 632–637 (2013)CrossRefGoogle Scholar
  14. 14.
    S.B. Dkhil, R. Ebdelli, W. Dachraoui, H. Faltakh, R. Bourguiga, J. Davenas, Improved photovoltaic performance of hybrid solar cells based on silicon nanowire and P3HT. Synth. Met. 192, 74–81 (2014)CrossRefGoogle Scholar
  15. 15.
    T. Hidouri, H. Saidi, C. Amri, F. Saidi, A. Bouazizi, Effect of wavelengths and excitation density on the optical properties of P3HT: SiNWs bulk heterojunction for photovoltaic applications. Superlattices Microstruct. 97, 409–416 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Chehata, A. Ltaief, E. Beyou, B. Ilahi, B. Salem, T. Baron, P. Gentile, H. Maaref, A. Bouazizi, Functionalized silicon nanowires/conjugated polymer hybrid solar cells: Optical, electrical and morphological characterizations. J. Lumin. 168, 315–324 (2015)CrossRefGoogle Scholar
  17. 17.
    K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, J. Zhu, Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Func. Mater. 16, 387–394 (2006)CrossRefGoogle Scholar
  18. 18.
    L. Zeng, X. Yu, Y. Han, D. Yang, Performance of silicon nanowire solar cells with phosphorus-diffused emitters. J. Nanomater. 2, 1–6 (2012)Google Scholar
  19. 19.
    H. Schmid, M.T. Björk, J. Knoch, H. Riel, W. Riess, P. Rice, T. Topuria, Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane. J. Appl. Phys. 103, 1–7 (2008)Google Scholar
  20. 20.
    H. Han, Z. Huang, W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications. Nano today 9, 271–304 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Qi, Z. Zhang, M. Wang, X. Ji, F. Yang, Electron transport characteristics of silicon nanowires by metal-assisted chemical etching. AIP Adv. 4, 031307–031313 (2014)CrossRefGoogle Scholar
  22. 22.
    A.G. Nassiopou, V. Gianneta, C. Katsogridakis, Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics. Nanoscale Res. Lett. 6, 597–605 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Saidi, T. Hidouri, I. Fraj, F. Saidi, A. Bouazizi, Effect of etching time and illumination on optical properties of SiNWs elaborated by metal assisted chemical etching (MACE) for organic photovoltaic applications. Superlattices Microstruct. 85, 925–930 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Arredondo, B. Romero, G. Del Pozo, M. Sessler, C. Veit, U. Würfel, Impedance spectroscopy analysis of small molecule solution processed organic solar cell. Energy Environ. Sci. 2, 678–686 (2009)CrossRefGoogle Scholar
  25. 25.
    G. García-Belmonte, P.P. Boix, J. Bisquert, M. Sesolo, H.J. Bolink, Simultaneous determination of carrier lifetime and electron density-of-states in P3HT: PCBM organic solar cells under illumination by impedance spectroscopy. Sol. Energy Mater. Sol. Cells 94, 366–375 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Anirban, T. Paul, P.T. Das, T.K. Nath, A. Dutta, Microstructure and electrical relaxation studies of chemically derived Gd–Nd co-doped nanocrystalline ceria electrolytes. Solid State Ion. 270, 73–83 (2015)CrossRefGoogle Scholar
  27. 27.
    N. Noda, Y.-H. Lee, A.J. Bur, V.M. Prabhu, C.R. Snyder, S.C. Roth, M. McBrearty, Dielectric properties of nylon 6/clay nanocomposites from on line process monitoring and off-line measurements. Polymer 46, 7201–7217 (2005)CrossRefGoogle Scholar
  28. 28.
    S.E.L. Kossi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, Structural and electric properties of La0.7 Sr0.25 Na0.05 Mn0.9 Ti0.1 O3 ceramics. Phys. B 440, 118–123 (2014)CrossRefGoogle Scholar
  29. 29.
    W. Aloui, A. Ltaief, A. Bouazizi, Dielectrical properties of PET-MWCNT/P3HT:PC70BM/Al device: Impedance spectroscopy analysis. Microelectron. Eng. 129, 96–99 (2014)CrossRefGoogle Scholar
  30. 30.
    A.B. Rhaiem, F. Hlel, K. Guidara, M. Gargouri, Electrical conductivity and dielectric analysis of AgNaZnP2O7 compound. Alloys Compd. 485, 718–723 (2009)CrossRefGoogle Scholar
  31. 31.
    M. ElHasnaoui, M.P.F. Graça, M.E. Achour, L.C. Costa, Electric modulus analysis of carbon black/copolymer composite materials. Mater. Sci. Appl. 2, 1421–1426 (2011)Google Scholar
  32. 32.
    A.J. Campbell, D.D.C. Bradley, D.G. Lidzey, Space-charge limited conduction with traps in poly(phenylenevinylene) light emitting diodes. Appl. Phys. 82, 6326–6342 (1997)CrossRefGoogle Scholar
  33. 33.
    N. Hannachi, AC electrical properties and dielectric relaxation of [N (C3H7)4]2Cd2Cl6, single crystal. Mater. Sci. Eng., B 172, 24–32 (2010)CrossRefGoogle Scholar
  34. 34.
    C. Dridi, M. Benzarti-Ghedira, F. Vocanson, R.B. Chaabane, J. Davenas, H.B Ouada, Optical and electrical properties of semi-conducting calix[5,9]arene thin films with potential applications in organic electronics. Semicond. Sci. Technol. 24, 105007–105017 (2009)CrossRefGoogle Scholar
  35. 35.
    A. Singh, S.B. Narang, K. Singh, P. Sharma, O.P. Pandey, Structural, AC conductivity and dielectric properties of Sr-La hexaferrite. Eur. Phys. J. Appl. Phys. 33, 189–193 (2006)CrossRefGoogle Scholar
  36. 36.
    H. Saidi, A. Walid, A. Bouazizi, B.R. Herrero, F. Saidi, Optical, morphological, and electrical properties of P3HT:SiNWs nanocomposite deposited on flexible substrate: effect of SiNWs concentration. Mater. Res. Express 4, 035007–035012 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Braik, C. Dridi, M. Ben Ali, A. Ali, M.N. Abbas, A. Errachid, Investigation of structural, optical and electrical properties of a new cobalt phthalocyanine thin films with potential applications inperchlorate sensor. Synth. Met. 209, 135–142 (2015)CrossRefGoogle Scholar
  38. 38.
    C.-G. Jianjun Liu, W.-G. Duan, W.N. Yin, R.W. Mei, J.R. Smith, Hardy, Large dielectric constant and Maxwell–Wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 70, 144106–144113 (2004)CrossRefGoogle Scholar
  39. 39.
    J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003)CrossRefGoogle Scholar
  40. 40.
    J.R. Mac, I. Donald, Spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992)CrossRefGoogle Scholar
  41. 41.
    A. Iwan, B. Boharewicz, I. Tazbir, V. Hamplová, A. Bubnov, Effect of chiral photosensitive liquid crystalline dopants on the performance of organic solar cells. Solid-State Electron. 104, 53–60 (2015)CrossRefGoogle Scholar
  42. 42.
    B. Asma, M. Afzal, M. Javed Akhtar, M.M. Nadeem, Hassan, Dielectric and impedance studies of DBSA doped polyaniline/PVC composites. Curr. Appl. Phys. 10, 601–606 (2010)CrossRefGoogle Scholar
  43. 43.
    H. Zhou, N. Du, L. Zhu, J. Shang, Z. Qian, X. Shen, Characteristics investigation of Ni-diamond composite electrodeposition. Electrochim. Acta 151, 157–167 (2015)CrossRefGoogle Scholar
  44. 44.
    A. Anderson, A. Sanders, W. Smith, Raman spectra of selenium dioxide at low temperatures. J. Raman Spectrosc. 31, 403–406 (2000)CrossRefGoogle Scholar
  45. 45.
    S. Hamza, A. Mhamdi, W. Aloui, A. Bouazizi, K. Khirouni, Effect of illumination on the dielectrical properties of P3HT:PC70BM nanocomposites. Mater. Res. Express 4, 055003–055007 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de MonastirUniversité de MonastirMonastirTunisia

Personalised recommendations