Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18030–18035 | Cite as

Microstructure, electromagnetic and microwave absorbing properties of plate-like LaCeNi powder

  • Lichun Cheng
  • Huaiying ZhouEmail author
  • Jilei Xiong
  • Shunkang PanEmail author
  • Jialiang Luo


La1−xCexNi5 (x = 0, 0.05, 0.10, 0.15) powders were prepared by arc melting and high-energy ball milling method. The structures and morphologies of LaCeNi powders were evaluated by X-ray diffraction and scanning electron microscopy. The saturation magnetization and electromagnetic parameters of the powders were characterized by using vibrating-sample magnetometry and vector network analysis, respectively. The results reveal that the La1−xCexNi5 (x = 0, 0.05, 0.10, 0.15) powders consist of LaNi5 single phase with different Ce contents. With the increase of Ce content, the particle size decreases and the saturation magnetization increases. The reflection-peak frequency shifts to lower frequency region upon Ce concentration. The minimum reflection loss and reflection peak frequency, for the sample with coating thickness of 1.8 mm, are − 19.7 dB and 8.16 GHz, respectively.



This work was supported by the National Natural Science Foundation of China (No. 51361007), Guangxi Key Laboratory of information materials (No. 161010-Z and 171016-Z) and Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing (No. GXKL06170107).


  1. 1.
    F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Supplementary materials for electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6340), 1137–1159 (2016)CrossRefGoogle Scholar
  2. 2.
    L.Y. Zhu, X.J. Zeng, X.P. Li, B. Yang, R.H. Yu, Hydrothermal synthesis of magnetic Fe3O4/graphene composites with good electromagnetic microwave absorbing performances. J. Magn. Magn. Mater. 426(15), 114–120 (2017)CrossRefGoogle Scholar
  3. 3.
    K.Y. Chen, C. Xiang, L.C. Li, H.S. Qian, Q.S. Xiao, F. Xua, A novel ternary composite: fabrication, performance and application of expanded graphite poly anilime/CoFe2O4 ferrite. J. Mater. Chem. 22(13), 6449–6455 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.B. Feng, T. Qiu, Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt% Ni alloy by shape modification. J. Magn. Magn. Mater. 324, 2528–2533 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Singh, H. Kaur, S.B. Narang, P. Kaur, R. Kaur, T. Dhiman, Investigation of microwave absorption and DC electrical properties of Mn2+ and Ti4+ substituted SrMnxTixFe(12–2x)O19 ferrite. J. Alloys Compd. 683, 302–307 (2016)CrossRefGoogle Scholar
  6. 6.
    Y.L. Yao, C.F. Zhang, Y.Q. Fan, J. Zhan, Preparation and microwave absorbing property of porous FeNi powders. Adv. Powder Technol. 27(5), 2285–2290 (2016)CrossRefGoogle Scholar
  7. 7.
    T.D. Zhou, D.F. Liang, L.J. Deng, D.C. Luan, Electron structure and microwave absorbing ability of flaky FeSiAl powders. J. Mater. Sci. Technol. 27, 170–174 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Singh, S.B. Narang, M.Y. Koledintseva, Microwave absorption characteristics of substituted Ba0.5Sr0.5MxFe(12–2x)O19 (M = Co2+-Zr4+ and Co2+-Ti4+) sintered ferrite at X-band for EMC/EMI applications, Microw. Opt. Technol. Lett. 54(7), 1661–1665 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Kaur, C. Singh, R. Kaur, T. Dhiman, S.B. Narang, Microwave and electrical properties of Co-Ti substituted M-type Ba hexagonal ferrite. Eur. Phys. J. B 88, 274–279 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Singh, C. Singh, D. Kaur, S.B. Narang, R. Jotania, R. Joshi, Investigation on structural and microwave absorption property of Co2+ and Y3+ substituted M-type Ba-Sr hexagonal ferrites prepared by a ceramic method. J. Alloys Compd. 695, 792–798 (2017)CrossRefGoogle Scholar
  11. 11.
    W.H. Zhou, Z.Y. Tang, D. Zhu, Z.W. Ma, C.L. Wu, L.W. Huang, Y.G. Chen, Low-temperature and instantaneous high-rate output performance of AB5-type hydrogen storage alloy with duplex surface hot-alkali treatment. J. Alloys Compd. 692, 364–374 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Chabane, F. Harel, A. Djerdir, M. Ibrahim, D. Candusso, O. Elkedim, N.E. Fenineche, Influence of the key parameters on the dynamic behavior of the hydrogen absorption by LaNi5. Int. J. Hydrogen Energy 42(2), 1412–1419 (2017)CrossRefGoogle Scholar
  13. 13.
    G.D. Adzic, J.R. Johnson, J.J. Reilly, J. McBreen, S. Mukerjee, M.P.S. Kumar, W. Zhang, S. Srinivasan, Cerium content and cycle life of multicomponent AB5 hydride electrodes. J. Electrochem. Soc. 142(10), 3429–3433 (1995)CrossRefGoogle Scholar
  14. 14.
    M. Sun, J. Zheng, L. Liang, K. Sun, Y. Yang, S.S. Zhao, Effect of Zn substitution on the electromagnetic and microwave absorbingproperties of BaCo2 hexaferrite. J. Mater. Sci. Mater. Electron. 26, 9970–9976 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Guo, S.C. Li, L. Wang, Y.W. Li, Effect of rare earth element substitution for vandium on structure and electrochemical characteristic of Ti0.26Zr0.07V0.24Mn0.1Ni0.33 hydrogen storage alloys. Chin. J. Inorg. Chem. 30(9), 2019–2024 (2014)Google Scholar
  16. 16.
    K. Yanagimoto, K. Majima, S. Sunada, Effect of powder compositions on GHz microwave absorption of EM absorbing sheets. J. Jpn. Soc. Powder Met. 51(4), 293–296 (2009)CrossRefGoogle Scholar
  17. 17.
    G.F. Mi, Y.L. Liu, H.J. Gong, H.Z. Fu, Effect of rare earth La and Ce on microstructure of ZL201 alloy. J. Henan Polytech. Univ. 28(1), 107–112 (2009) (in Chinese)Google Scholar
  18. 18.
    Z.Q. Zheng, H.Y. Li, Rare earth functional materials (Chemical Industry Press, Beijing, 2003), pp. 28–35Google Scholar
  19. 19.
    S.B. Liao, Ferromagnetic (part II) (Science Press, Beijing, 1988), pp. 3–90Google Scholar
  20. 20.
    X. Huang, J. Zhang, M. Lai, T. Sang, Preparation an microwave absorption mechanisms of the Ni–Zn ferrite nanofibers. J. Alloys Compd. 627, 367–373 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  3. 3.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations