Microstructures and energy storage properties of Sr0.5Ba0.5Nb2O6 ceramics with SrO–B2O3–SiO2 glass addition

  • Xi Chen
  • Yu Tang
  • Xiangkun Bo
  • Jun SongEmail author
  • Jinzhi Luo


The Sr0.5Ba0.5Nb2O6 (SBN) dielectric ceramics with different SrO–B2O3–SiO2 (SBS) glass content were prepared via solid state reaction method. The effect of glass content on their sintering temperature, density, microstructure, dielectric and energy storage properties was investigated. The addition of glass was confirmed to be effective in reducing sintering temperature and refining microstructure. The XRD results showed that no secondary phase was formed after adding glass, but Sr2+ might diffuse into SBN lattice during the thermal heat-treatment. The dielectric breakdown strength (BDS) of SBN ceramic was remarkably enhanced with 4 wt% glass addition, which is almost twice as much as that of pure SBN ceramic. This sample also presented a large discharge energy density of 0.55 J/cm3 and high energy efficiency of 72.4%. These results indicate the addition of SBS glass significantly improved the microstructures, dielectric and energy storage properties of SBN ceramics.


  1. 1.
    I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339–343 (1972)CrossRefGoogle Scholar
  2. 2.
    G.R. Love, Energy storage in ceramic dielectrics. J. Am. Ceram. Soc. 73, 323–328 (1990)CrossRefGoogle Scholar
  3. 3.
    X.F. Chen, F. Cao, Y. Gu, H.L. Zhang, G. Yu, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, Dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 antiferroelectric bulk ceramics. J. Am. Ceram. Soc. 95, 1163–1166 (2012)CrossRefGoogle Scholar
  4. 4.
    S.C. Chen, X.C. Wang, T.Q. Yang, J.F. Wang, Composition-dependent dielectric properties and energy storage performance of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. J. Electroceram. 32, 307–310 (2014)CrossRefGoogle Scholar
  5. 5.
    E.P. Gorzkowshi, M.J. Pan, B. Bender, C.C.M. Wu, Glass-ceramics of barium strontium titanate for high energy density capacitors. J. Electroceram. 18, 269–276 (2007)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, J. Song, G.H. Chen, C.L. Yuan, X.Q. Li, C.R. Zhou, Effect of crystallization temperature on the dielectric property and energy density of SrO-BaO-Nb2O5-B2O3 glass-ceramics. J. Non-Cryst. Solids 410, 96–99 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Zheng, G.H. Chen, C.L. Chen, C.L. Yuan, C.R. Zhou, X. Chen, Q. Feng, M. Li, Dielectric characterization and energy-storage performance of lead free niobate glass-ceramics added with La2O3. Ceram. Int. 42, 1827–1832 (2016)CrossRefGoogle Scholar
  8. 8.
    S.J. Wang, J. Tian, K. Yang, J.R. Liu, J.W. Zhai, B. Shen, Crystallization kinetics behavior and dielectric energy storage properties of strontium potassium niobate glass-ceramics with different nucleating agents. Ceram. Int. 44, 8528–8533 (2018)CrossRefGoogle Scholar
  9. 9.
    B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)CrossRefGoogle Scholar
  10. 10.
    Z.T. Yang, H.L. Du, S.B. Qu, Y.D. Hou, H. Ma, J.F. Wang, J. Wang, X.Y. Wei, Z. Xu, Significantly enhanced recoverable energy storage density in potassium-sodium niobate based lead free ceramics. J. Mater. Chem. A 4, 13778–13785 (2016)CrossRefGoogle Scholar
  11. 11.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29, 253–258 (1996)CrossRefGoogle Scholar
  12. 12.
    J.F. Wang, T.Q. Yang, S.C. Chen, X. Yao, Small hysteresis and high energy storage power of antiferroelectric ceramics. Funct. Mater. Lett. 1, 1350064 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, X.M. Chen, Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35, 1469–1476 (2015)CrossRefGoogle Scholar
  14. 14.
    B. Jimenef, C. Alemany, J. Mendiola, E. Maurer, Phase transitions in ferroelectric ceramics of the type Sr0.5Ba0.5 Nb2O6.. J. Phys. Chem. Solids 45, 1383–1386 (1985)CrossRefGoogle Scholar
  15. 15.
    R.G. Mendes, E.B. Araújo, J.A. Eiras, Structural characterization and ferroelectric properties of strontium barium niobate (SrxBa1–xNb2O6) thin films. J. Mater. Res. 4, 113–116 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Said, T.S. Velayutham, W.C. Gan, W.H. Abd, Majid, The structural and electrical properties of SrxBa(1–x)Nb2O6 (SBN) ceramic with varied composition. Ceram. Int. 41, 7119–7124 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.Q. Qu, A.D. Li, Q.Y. Shao, Y.F. Tang, D. Wu, C.L. Mak, K.H. Wong, N.B. Ming, Structure and electrical properties of strontium barium niobate ceramics. Mater. Res. Bull. 37, 503–513 (2002)CrossRefGoogle Scholar
  18. 18.
    T.S. Velayutham, N.I.F. Salim, W.C. Gan, W.H. Abd, Majid, Effect of cerium addition on the microstructure, electrical and relaxor behavior of Sr0.5Ba0.5Nb2O6 ceramics. J. Alloys Compd. 666, 334–340 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, G.S. Wang, F. Gao, C.L. Mao, F. Cao, X.L. Dong, Influence of Sr/Ba ratio on the dielectric, ferroelectric and pyroelectric properties of strontium barium niobate ceramics. Ceram. Int. 39, 1971–1976 (2013)CrossRefGoogle Scholar
  20. 20.
    Q. Xu, D. Zhan, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Effect of MgO-CaO-Al2O3-SiO2 glass additive on dielectric properties of Ba0.95Sr0.05Zr0.2Ti0.8O3 ceramics. J. Alloys Compd. 558, 77–83 (2015)CrossRefGoogle Scholar
  21. 21.
    W. Ting, Y.P. Pu, K. Chen, Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int. 39, 6787–6793 (2013)CrossRefGoogle Scholar
  22. 22.
    T. Wu, Y.P. Pu, T.T. Zong, P. Gao, Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO-TiO2-SiO2 glass-ceramics addition. J. Alloys Compd. 584, 461–465 (2014)CrossRefGoogle Scholar
  23. 23.
    T. Wang, L. Jin, L.L. Shu, Q.Y. Hu, X.Y. Wei, Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloys Compd. 617, 399–403 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Liu, C.L. Yuan, X.X. Zhou, L.F. Meng, C.R. Zhou, G.H. Chen, J.W. Xu, Q.N. Li, Microstructures and energy storage properties of Sr0.5Ba0.5Nb2O6 ceramics with BaO-B2O3-SiO2 glass addition. Mater. Sci. Forum. 852, 883–888 (2016)CrossRefGoogle Scholar
  25. 25.
    G.H. Chen, B. Qi, Microstructure and dielectric properties of CBS glass-doped Sr0.5Ba0.5Nb2O6 ceramic system. J. Mater. Sci. 20, 248–252 (2009)Google Scholar
  26. 26.
    H.B. Yang, F. Yan, Y. Lin, T. Wang, Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc. 38, 1367–1373 (2018)CrossRefGoogle Scholar
  27. 27.
    D. Zhang, T.W. Button, V.O. Sherman, A.K. Tagantsev, T. Price, D. Iddles, Effects of glass additions on the microstructure and dielectric properties of barium strontium titanate (BST) ceramics. J. Eur. Ceram. Soc. 30, 407–412 (2010)CrossRefGoogle Scholar
  28. 28.
    B. Zhang, X. Yao, L.Y. Zhang, Laminated microstructure of Bivalva shell and research of biomimetic ceramic/polymer composite. Ceram. Int. 30, 2011–2014 (2004)CrossRefGoogle Scholar
  29. 29.
    L.M. Chen, X.H. Hao, Q.W. Zhang, S.L. An, Energy-storage performance of PbO-B2O3-SiO2 added (Pb0.92 Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric ceramics prepared by microwave sintering method. J. Mater. Sci. 27, 4534–4540 (2016)Google Scholar
  30. 30.
    K. Chen, Y.P. Pu, N. Xu, X. Luo, Effects of SrO-B2O3-SiO2 glass additive on densification and energy storage properties of Ba0.4Sr0.6TiO3 ceramics. J. Mater. Sci. Mater. Electron. 23, 1599–1603 (2012)CrossRefGoogle Scholar
  31. 31.
    M. Hillert, Theory of normal and abnormal grain growth. Acta Metall. 13, 227–251 (1965)CrossRefGoogle Scholar
  32. 32.
    N. Thangamani, K. Chinnakali, F.D. Gnanam, The effect of powder processing on densification, microstructure, and mechanical properties of hydroxyapatite. Ceram. Int. 28, 355–362 (2002)CrossRefGoogle Scholar
  33. 33.
    D.W. Richerson (ed.), Modern Ceramic Engineering: Properties, Processing and Use in Design (Marcel Dekker, New York, 1992)Google Scholar
  34. 34.
    R.L. Coble, J.E. Burke, Sintering in Ceramics, Progress in Ceramic Science (Pergamon Press, New York, 1964)Google Scholar
  35. 35.
    J. Song, L. Han, T.Y. Liu, Q. Feng, Z.W. Luo, A.X. Lu, Microstructures and energy storage properties of BSN ceramics with crystallizable glass addition. J. Mater. Sci. 29, 5934–5943 (2018)Google Scholar
  36. 36.
    J.W. Zhai, X. Yao, X.G. Cheng, L.Y. Zhang, H. Cheng, Dielectric properties under dc-bias field of Ba0.6Sr0.4TiO3 with various grain sizes. Mater. Sci. Eng. B 94, 164–169 (2002)CrossRefGoogle Scholar
  37. 37.
    H.X. Tang, H.A. Sodano, Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 13, 1373–1379 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Luo, J. Du, Q. Tang, C.H. Mao, Lead sodium niobate glass-ceramic dielectrics and internal electrode structure for high energy storage density capacitors. IEEE Trans. Electron Devices 55, 3549–3554 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Energy EngineeringHuanghuai UniversityZhumadianChina
  2. 2.Research and Development departmentHunan Reshine New Material Co., LtdChangshaChina
  3. 3.Research and Development departmentAmperex Technology Co., LtdNingdeChina
  4. 4.School of Materials Science and EngineeringJingdezhen Ceramic InstituteJingdezhenChina

Personalised recommendations