CTAB-assisted microemulsion synthesis of unique 3D network nanostructured polypyrrole presenting significantly diverse capacitance performances in different electrolytes

  • Caixia Li
  • Ping HeEmail author
  • Zhen Tang
  • Mingqian He
  • Faqin DongEmail author
  • Xiaojuan Zhang
  • Huanhuan Liu
  • Shuai Wang


In this work, the unique 3D network nanostructured polypyrrole (PPy) has been successfully synthesized in cetyltrimethylammonium bromide/butyl alcohol/hexane/water microemulsion system. The composition, crystalline characteristic and morphology of as-prepared PPy materials are characterized by Fourier transform infrared spectrometer, X-ray diffractometer and field emission scanning electron microscope. It is shown that as-prepared PPy materials possess unique 3D network nanostructure stacked by PPy nanospheres with an average diameter of 100 nm. Furthermore, the electrochemical performances of PPy based electrodes are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M H2SO4, 1.0 M Na2SO4 and 1.0 M KCl electrolytes, respectively. At a current density of 1.0 A g−1, as-prepared PPy based electrode exhibits the highest specific capacitance (329.0 F g−1) in 1.0 M H2SO4 electrolyte, much higher than that in 1.0 M Na2SO4 (156.6 F g−1) or 1.0 M KCl (153.2 F g−1) electrolyte. However, the specific capacitance of PPy based electrode in 1.0 M H2SO4 electrolyte retains only 40.6% of the initial specific capacitance after 5000 continuous charge/discharge cycles and, interestingly, 83.9% and 81.3% in 1.0 M Na2SO4 and 1.0 M KCl electrolytes, respectively. It is reasonable that the process of deoxidation and reoxidation of PPy nanomaterials is accompanied by the intercalation and deintercalation of massive H3O+ in 1.0 M H2SO4 electrolyte, which might result in the collapsed structure of as-prepared PPy nanomaterials and the relative instability during the cycling process.



This work was supported by the Longshan academic talent research supporting program of SWUST (18LZX322 and 17LZX406), the National Basic Research Program of China (2014CB846003) and the National Science & Technology Supported Program (2014BAC13B05). Also we are grateful for the help of Analytical and Testing Center of Southwest University of Science and Technology.


  1. 1.
    B. Dunn, H. Kamath, J.M. Tarascon, Science 334, 928–935 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Wang, H.B. Feng, J.H. Li, Small 10, 2165–2181 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Mao, S.Z. Chen, P. He, H.L. Zhang, H.T. Liu, J. Mater. Chem. A 2, 4132–4135 (2014)CrossRefGoogle Scholar
  4. 4.
    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  5. 5.
    C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130, 2730–2731 (2008)CrossRefGoogle Scholar
  6. 6.
    X. Li, Y. Tang, J.H. Song, W. Yang, M.S. Wang, C.Z. Zhu, W.G. Zhao, J.M. Zheng, Y.H. Lin, Carbon 129, 236–244 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.H. Wang, P. He, W. Lei, F.Q. Dong, T.H. Zhang, Compos. Sci. Technol. 103, 16–21 (2014)CrossRefGoogle Scholar
  8. 8.
    W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697–1721 (2011)CrossRefGoogle Scholar
  9. 9.
    J. Yan, Q. Wang, T. Wei, Z.J. Fan, Adv. Energy Mater. 4, 157–164 (2014)Google Scholar
  10. 10.
    M. Yu, J. Li, L.J. Wang, Chem. Eng. J. 310, 300–306 (2017)CrossRefGoogle Scholar
  11. 11.
    S.L. Candelaria, Y.Y. Shao, W. Zhou, X.L. Li, J. Xiao, J.G. Zhang, Y. Wang, J. Liu, J.H. Li, G.Z. Cao, Nano Energy 1, 195–220 (2012)CrossRefGoogle Scholar
  12. 12.
    X. Zhang, J.M. Wang, J. Liu, J. Wu, H. Chen, H. Bi, Carbon 115, 134–146 (2017)CrossRefGoogle Scholar
  13. 13.
    X.H. Xia, Y.Q. Zhang, D.L. Chao, C. Guan, Y.J. Zhang, L. Li, X. Ge, I.M. Bacho, J.P. Tu, H.J. Fan, Nanoscale 6, 5008–5048 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, H. Dou, J. Wang, B. Ding, Y.L. Xu, Z. Chang, X.D. Hao, J. Power Source 327, 221–228 (2016)CrossRefGoogle Scholar
  15. 15.
    X.Y. Yu, L. Yu, X.W. Lou, Adv. Energy Mater. 6, 1501333 (2016)CrossRefGoogle Scholar
  16. 16.
    Q.F. Meng, K.F. Cai, Y.X. Chen, L.D. Chen, Nano Energy 36, 268–285 (2017)CrossRefGoogle Scholar
  17. 17.
    A. Eftekhari, L. Li, Y. Yang, J. Power Sources 347, 86–107 (2017)CrossRefGoogle Scholar
  18. 18.
    F.H. Hsu, T.M. Wu, J. Mater. Sci.-Mater. Electron. 29, 382–391 (2018)CrossRefGoogle Scholar
  19. 19.
    G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011)CrossRefGoogle Scholar
  20. 20.
    Z.G. Yin, Q.D. Zheng, Adv. Energy Mater. 2, 179–218 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Singh, A. Chandra, J. Appl. Electrochem. 43, 773–782 (2013)CrossRefGoogle Scholar
  22. 22.
    W. Sun, R.L. Zheng, X.Y. Chen, J. Power Sources 195, 7120–7125 (2010)CrossRefGoogle Scholar
  23. 23.
    R.S. Salunke, C.K. Kasar, M.A. Bangar, P.G. Chavan, D.J. Shirale, J. Mater. Sci.-Mater. Electron. 28, 14672–14677 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Merisalu, T. Kahro, J. Kozlova, A. Niilisk, A. Nikolajev, M. Marandi, A. Floren, H. Alles, V. Sammelselg, Synth. Met. 200, 16–23 (2015)CrossRefGoogle Scholar
  25. 25.
    J.H. Huang, Z.H. Yang, B. Yang, R.J. Wang, T.T. Wang, J. Power Sources 271, 143–151 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Peshoria, A.K. Narula, J. Mater. Sci.-Mater. Electron. 28, 18348–18356 (2017)CrossRefGoogle Scholar
  27. 27.
    Z.N. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702–730 (2015)CrossRefGoogle Scholar
  28. 28.
    X.T. Zhang, J. Zhang, W.H. Song, Z.F. Liu, J. Phys. Chem. B 110, 1158–1165 (2006)CrossRefGoogle Scholar
  29. 29.
    Q.F. Wu, K.X. He, H.Y. Mi, X.G. Zhang, Mater. Chem. Phys. 101, 367–371 (2007)CrossRefGoogle Scholar
  30. 30.
    Y.J. Song, R.M. Garcia, R.M. Dorin, H.R. Wang, Y. Qiu, E.N. Coker, W.A. Steen, J.E. Miller, J.A. Shelnut, Nano Lett. 7, 3650–3655 (2007)CrossRefGoogle Scholar
  31. 31.
    R. Temmer, I. Must, F. Kaasik, A. Aabloo, T. Tamm, Sens Actuator B 166–167, 411–418 (2012)CrossRefGoogle Scholar
  32. 32.
    B. Wei, L.D. Wang, Q.H. Miao, Y.N. Yuan, P. Dong, R. Vajtai, W.D. Fei, Carbon 85, 249–260 (2015)CrossRefGoogle Scholar
  33. 33.
    A.K. Ganguli, A. Ganguly, S. Vaidya, Chem. Soc. Rev. 39, 474–485 (2010)CrossRefGoogle Scholar
  34. 34.
    C. Aubery, C. Solans, S. Prevost, M. Gradzielski, M. Sanchezdominguez, Langmuir 29, 1779–1789 (2013)CrossRefGoogle Scholar
  35. 35.
    C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qian, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 44, 484–539 (2015)CrossRefGoogle Scholar
  36. 36.
    A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sust. Energ. Rev. 58, 1189–1206 (2016)CrossRefGoogle Scholar
  37. 37.
    M. Mirzaeian, Q. Abbas, A. Ogwu, P. Hallb, M. Goldinc, M. Mirzaeiand, H.F. Jirandehid, Int. J. Hydrogen Energy 42, 25565–25587 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Li, L.L. Yang, J. Mater. Sci.-Mater. Eletron. 26, 747–754 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Xia, J. Yang, Synth. Met. 160, 1688–1691 (2010)CrossRefGoogle Scholar
  40. 40.
    W. Lei, P. He, Y.H. Wang, S.S. Zhang, F.Q. Dong, H.T. Liu, Electrochim. Acta 132, 112–117 (2014)CrossRefGoogle Scholar
  41. 41.
    S.P. Palaniappan, P. Manisankar, Mater. Chem. Phys. 122, 15–17 (2010)CrossRefGoogle Scholar
  42. 42.
    P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, J. Alloy. Compd. 509, 2567–2571 (2011)CrossRefGoogle Scholar
  43. 43.
    Y. Huang, H.F. Li, Z.F. Wang, M.S. Zhu, Z.X. Pei, Q. Xue, Y. Huang, C.Y. Zhi, Nano Energy 22, 422–438 (2016)CrossRefGoogle Scholar
  44. 44.
    A. Osterholm, T. Lindfors, J. Kauppila, P. Damlin, C. Kvarnstrom, Electrochim. Acta 83, 463–470 (2012)CrossRefGoogle Scholar
  45. 45.
    H.Y. Mi, X.G. Zhang, X.G. Ye, S.D. Yang, J. Power Sources 176, 403–409 (2008)CrossRefGoogle Scholar
  46. 46.
    M. Rajesh, C.J. Raj, B.C. Kim, B. Cho, J.M. Ko, K.H. Yu, Electrochim. Acta 220, 373–383 (2016)CrossRefGoogle Scholar
  47. 47.
    F. Wolfart, D.P. Dubal, M. Vidotti, R. Holze, P. Gómez-Romero, J. Solid State Electrochem. 20, 901–910 (2016)CrossRefGoogle Scholar
  48. 48.
    H.J. Yu, J.H. Wu, L.Q. Fan, Y.Z. Lin, K.Q. Xu, Z.Y. Tang, C.X. Cheng, S. Tang, J.M. Lin, M.L. Huang, Z. Lan, J. Power Sources 198, 402–407 (2012)CrossRefGoogle Scholar
  49. 49.
    A. Afzal, F.A. Abuilaiwi, A. Habib, M. Awais, J. Power Sources 362, 174–186 (2017)CrossRefGoogle Scholar
  50. 50.
    S. Paul, K.S. Choi, J.L. Dong, P. Sudhagar, Y.S. Kang, Electrochim. Acta 78, 649–655 (2012)CrossRefGoogle Scholar
  51. 51.
    J.K. Lee, H. Jeong, R. Lavall, A. Busnaina, Y.L. Kim, Y.J. Jung, H.Y. Lee, ACS Appl. Mater. Interfaces 9, 33203–33211 (2017)CrossRefGoogle Scholar
  52. 52.
    W. Lei, P. He, S.S. Zhang, F.Q. Dong, Y.J. Ma, J. Power Sources 266, 347–352 (2014)CrossRefGoogle Scholar
  53. 53.
    J.W. Lee, T. Ahn, D. Soundararajan, J.M. Ko, J.D. Kim, Chem. Commun. 47, 6305–6307 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.Mianyang Kingtiger New Energy Technology Co. Ltd.MianyangPeople’s Republic of China
  3. 3.Sichuan Changhong New Energy Technology Co. Ltd.MianyangPeople’s Republic of China
  4. 4.Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of EducationSouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations