Advertisement

The role of potassium in grain boundaries of flexible CZTSSe thin film solar cells

  • Jinze Li
  • Jie Xu
  • Wei Li
  • Honglie Shen
Article
  • 15 Downloads

Abstract

The electrical property at the grain boundaries (GBs) of Cu2ZnSn(S,Se)4 (CZTSSe) thin film is very important to fabricate a high efficiency device and it is closely interrelated with alkali elements. Here, we used Kelvin probe force microscopy to confirm that spike-type contact potential difference formed at the GBs in CZTSSe thin film after potassium (K) doping, which could attract the electrons to travel through the grains boundaries and was favorable for obtaining a device with better performance. K also could promote the grain growth of CZTSSe thin films. With the help of K doping, a flexible CZTSSe solar cell with an efficiency over 3% was obtained.

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 11504177, 61774084), Natural Science Foundation of Jiangsu Province (Grant Nos. BK20160909, BK20171442) and NUPTSF (Grant No. NY218109).

References

  1. 1.
    K.W. Brew, S.M. McLeod, S.M. Garner, R. Agrawal, Thin Solid Films 642, 110–116 (2017)CrossRefGoogle Scholar
  2. 2.
    S. López-Marino, Y. Sánchez, M. Espíndola-Rodríguez, X. Alcobé, H. Xie, M. Neuschitzer et al., J. Mater. Chem. A 5, 1895–1907 (2016)CrossRefGoogle Scholar
  3. 3.
    W. Li, Z. Su, J.M.R. Tan, S.Y. Chiam, H.L. Seng, S. Magdassi et al., Chem. Mater. 29, 4273–4281 (2017)CrossRefGoogle Scholar
  4. 4.
    T. Gershon, B. Shin, N. Bojarczuk, M. Hopstaken, D.B. Mitzi, S. Guha, Adv. Energy Mater. 5, 1400849 (2015)CrossRefGoogle Scholar
  5. 5.
    Y.T. Hsieh, Q. Han, C. Jiang, T.B. Song, H. Chen, L. Meng et al., Adv. Energy Mater. 6, 1502386 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Nagaoka, H. Miyake, T. Taniyama, K. Kakimoto, Y. Nose, M.A. Scarpulla et al., Appl. Phys. Lett. 104, 152101 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Tong, C. Yan, Z. Su, F. Zeng, J. Yang, Y. Li et al., Appl. Phys. Lett. 105, 223903 (2014)CrossRefGoogle Scholar
  8. 8.
    J. Li, H. Shen, W. Wang, J. Chen, H. Shang, Y. Li et al., Mater. Lett. 172, 90–93 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Johnson, S.V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I.V. Veryovkin et al., Energy Environ. Sci. 7, 1931–1938 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Patel, V. Kheraj, D.V. Shah, C.J. Panchal, N.G. Dhere, J. Alloys Compd. 663, 842–847 (2016)CrossRefGoogle Scholar
  11. 11.
    J.B. Li, V. Chawla, B.M. Clemens, Adv. Mater. 24, 720–723 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Hanna, T. Glatzel, S. Sadewasser, N. Ott, H.P. Strunk, U. Rau et al., Appl. Phys. A 82, 1–7 (2006)CrossRefGoogle Scholar
  13. 13.
    B.P. Nguyen, G.Y. Kim, W. Jo, B.J. Kim, H.S. Jung, Nanotechnology 28, 315402 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.College of Materials Science & Technology, Jiangsu Key Laboratory of Materials and Technology for Energy ConversionNanjing University of Aeronautics & AstronauticsNanjingPeople’s Republic of China

Personalised recommendations