Effect of porous modification on the synthesis and photocatalytic activity of graphitic carbon nitride/carbon quantum dot nanocomposite

  • Jianhui ShiEmail author
  • Shuting Feng
  • Tian Chen
  • Yuzhen Li


Metal-free graphitic carbon nitride (g-C3N4) and carbon quantum dots (CQDs) have a promising attention as to their superior photocatalytic activities and physicochemical properties. In the article, g-C3N4 and CQDs were connected effectively through porous modification of g-C3N4 by directly heating melamine hydrochlorid, which benefits to the enhancement of the composites’ photocatalytic activity. The structures and morphologies of the photocatalysts were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, N2 adsorption–desorption, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectrum and photoluminescence spectroscopy. Meanwhile, the porous g-C3N4 and CQDs composite (pg-C3N4/CQDs) exhibited the improved photocatalytic activity for the degradation of RhB under visible light irradiation, which may be contributed three reasons: (1) pg-C3N4 has much higher surface area (~ 20 times) and more stronger photocatalytic oxidation capacity than that of g-C3N4; (2) as the electron-sinks, CQDs can improve the photogenerated electron–hole pair’s separation; (3) CQDs can upconvert the light with wavelengths longer than 650 nm into the shorter wavelengths to increase light harvesting, while pg-C3N4 utilizes the light to degrade pollutants. In addition, the possible photocatalytic degraded mechanism was investigated in detail. This work will be useful for designing other CQDs-based photocatalysts and providing a promising approach to environmental purification.



This work was supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2015128), and Qualified Personnel Foundation of Taiyuan University of Technology (QPFT) (Grant No. tyutrc-201326c) and the Shanxi Provincial Key Research and Development Plan (general) Social Development Project (Grant No. 201703D321009-5).

Supplementary material

10854_2018_9845_MOESM1_ESM.docx (551 kb)
Supplementary material 1 (DOCX 551 KB)


  1. 1.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  2. 2.
    Z.W. Zhao, Y.J. Sun, F. Dong, Nanoscale 7, 15–37 (2015)CrossRefGoogle Scholar
  3. 3.
    S.W. Cao, J.G. Yu, J. Phys. Chem. Lett. 5, 2101–2107 (2014)CrossRefGoogle Scholar
  4. 4.
    S.W. Cao, J.X. Low, J.G. Yu, M. Jaroniec, Adv. Mater. 27, 2150–2176 (2015)CrossRefGoogle Scholar
  5. 5.
    K. Tian, W.J. Liu, H. Jiang, ACS Sustain. Chem. Eng. 3, 269–276 (2015)CrossRefGoogle Scholar
  6. 6.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26, 3894–3901 (2010)CrossRefGoogle Scholar
  7. 7.
    A.J. Du, S. Sanvito, Z. Li, D.W. Wang, Y. Jiao, T. Liao, Q. Sun, Y.H. Ng, Z.H. Zhu, J. Am. Chem. Soc. 134, 4393–4397 (2012)CrossRefGoogle Scholar
  8. 8.
    Y. Hou, F. Zuo, A. Dagg, P.Y. Feng, Nano Lett. 12, 6464–6473 (2012)CrossRefGoogle Scholar
  9. 9.
    Y.J. Wang, Q.S. Wang, X.Y. Zhan, F.M. Wang, M. Safdar, J. He, Nanoscale 5, 8326–8339 (2013)CrossRefGoogle Scholar
  10. 10.
    Z.W. Tong, D. Yang, T.X. Xiao, Y. Tian, Z.Y. Jiang, Chem. Eng. J. 260, 117–125 (2015)CrossRefGoogle Scholar
  11. 11.
    Z.A. Huang, Q. Sun, K.L. Lv, Z.H. Zhang, M. Li, B. Li, Appl. Catal. B 164, 420–427 (2015)CrossRefGoogle Scholar
  12. 12.
    J.Z. Li, Y. M, Z.F. Ye, M.J. Zhou, H.Q. Wang, C.C. Ma, D.D. Wang, P.W. Huo, Y.S. Yan, Appl. Catal. B 204, 224–238 (2017)CrossRefGoogle Scholar
  13. 13.
    T.T. Zhu, Y.H. Song, H.Y. Ji, Y.G. Xu, Y.X. Song, J.X. Xia, S. Yin, Y.P. Li, H. Xu, Q. Zhang, H.M. Li, Chem. Eng. J. 271, 96–105 (2015)CrossRefGoogle Scholar
  14. 14.
    W.L. Shi, F. Guo, J.B. Chen, G.B. Che, X. Lin, J. Alloys Compd. 612, 143–148 (2014)CrossRefGoogle Scholar
  15. 15.
    W.L. Yu, J.X. Chen, T.T. Shang, L.F. Chen, L. Gu, T.Y. Peng, Appl. Catal. B 219, 693–704 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, H. Xu, Z.G. Chen, H.M. Li, Langmuir 32, 2075–2084 (2016)CrossRefGoogle Scholar
  17. 17.
    H.H. Wang, J. Lu, F.Q. Wang, W.H. Wei, Y. Chang, S.J. Dong, Ceram. Int. 40, 9077–9086 (2014)CrossRefGoogle Scholar
  18. 18.
    D.L. J, W.X. Ma, P. Xiao, D. Li, M. Chen, J. Colloid Interface Sci. 512, 693–700 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Xiong, L. Chen, Q. Yuan, J. He, S.L. Luo, C.T. Au, S.F. Yin, Carbon 86, 217–224 (2015)CrossRefGoogle Scholar
  20. 20.
    G.Q. Tan, L.N. She, T. Liu, C. Xu, H.J. Ren, A. Xia, Appl. Catal. B 207, 120–133 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Mitra, H.Y. Aziz, Adv. Powder Technol. 29, 94–105 (2018)CrossRefGoogle Scholar
  22. 22.
    Z. Zhu, Z.Y. Lu, D.D. Wang, X. Tang, Y.S. Yan, W.D. Shi, Y.S. Wang, N.L. Gao, X. Yao, H.J. Dong, Appl. Catal. B 182, 115–122 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Mitra, P. Howli, D. Sen, B. Dasa, K.K. Chattopadhyay, Nanoscale 8, 19099–19109 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.J. Yao, Y.M. Cai, F. Lu, J.C. Qin, F.Y. Wei, C. Xu, S.B. Wang, Ind. Eng. Chem. Res. 53, 17294–17302 (2014)CrossRefGoogle Scholar
  25. 25.
    Q. Han, N. Chen, J. Zhang, L.T. Qu, Mater. Horiz. 4, 832–850 (2017)CrossRefGoogle Scholar
  26. 26.
    W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohamed, Nano Energy 13, 757–770 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Zheng, L.H. Lin, B. Wang, X.C. Wang, Angew. Chem. Int. Ed. 54, 12868–12884 (2015)CrossRefGoogle Scholar
  28. 28.
    N. Wang, J. Li, L.P. Wu, X.J. Li, J. Shu, Int. J. Hydrog. Energy 41, 22743–22750 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Liu, Y. Liu, N.Y. Liu, Y.Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z.H. Kang, Science 347, 970–974 (2015)CrossRefGoogle Scholar
  30. 30.
    S.Y. Li, W. Shen, Z.Q. Gao, Chem. Soc. Rev. 44, 362–381 (2015)CrossRefGoogle Scholar
  31. 31.
    J.Z. Li, Y. Ma, Z.F. Ye, M.J. Zhou, H.Q. Wang, C.C. Ma, D.D. Wang, P.W. Huo, Y.S. Yan, Appl. Catal. B 204, 224–238 (2017)CrossRefGoogle Scholar
  32. 32.
    J. Wang, Z. Yang, X.X. Gao, W.Q. Yao, W.Q. Wei, X.J. Chen, R.L. Zong, Y.F. Zhu, Appl. Catal. B 217, 169–180 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Tian, Y.H. Leng, Z.H. Zhao, Y. Xia, Y.H. Sang, P. Hao, J. Zhan, M.C. Li, H. Liu, Nano Energy 11, 419–427 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Sun, Q. Zeng, X. Zhao, Y. Shao, P.G. Ji, C.Q. Wang, T. Yan, B. Du, J. Hazard. Mater. 339, 9–21 (2017)CrossRefGoogle Scholar
  35. 35.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 26, 3894–3910 (2010)CrossRefGoogle Scholar
  36. 36.
    P.K. Harold, E.A. Leroy, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd edn. (Wiley, New York, 1974)Google Scholar
  37. 37.
    X.J. Yu, J.J. Liu, Y.C. Yu, S.L. Zuo, B.S. Li, Carbon 68, 718–724 (2014)CrossRefGoogle Scholar
  38. 38.
    T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 53, 7281–7285 (2014)CrossRefGoogle Scholar
  39. 39.
    W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, Chem. Commun. 51, 858–861 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Fang, Y. Xia, K.L. Lv, Q. Li, J. Sun, M. Li, Appl. Catal. B 185, 225–232 (2016)CrossRefGoogle Scholar
  41. 41.
    L. Zhao, F. Geng, F. Di, L.H. Guo, B. Wan, Y. Yang, H. Zhang, G. Sun, RSC Adv. 4, 45768–45771 (2014)CrossRefGoogle Scholar
  42. 42.
    S. Yang, X. Feng, X. Wang, K. Müllen, Angew. Chem. Int. Ed. 50, 5339–5343 (2011)CrossRefGoogle Scholar
  43. 43.
    J. Zhang, M. Zhang, L. Lin, X. Wang, Angew. Chem. Int. Ed. 54, 6297–6301 (2015)CrossRefGoogle Scholar
  44. 44.
    J.C. Yu, A.W. Xu, L.Z. Zhang, R.Q. Song, L. Wu, J. Phys. Chem. B 108, 64–70 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jianhui Shi
    • 1
    Email author
  • Shuting Feng
    • 1
  • Tian Chen
    • 1
  • Yuzhen Li
    • 1
  1. 1.College of Environmental Science and EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations