Advertisement

Polyaniline intercalated with MoS2 nanosheets: structural, electric and thermoelectric properties

  • Dominique Mombrú
  • Mariano Romero
  • Ricardo Faccio
  • Alvaro W. Mombrú
Article
  • 115 Downloads

Abstract

In this report, we present the synthesis of few layer MoS2 and polyaniline/MoS2 nanocomposites with a complete structural characterization by atomic force microscopy, small-angle X-ray scattering, X-ray diffraction, high-resolution transmission electron microscopy, Raman spectroscopy followed by AC impedance spectroscopy and thermoelectric characterizations. Our structural studies revealed that the intercalation of MoS2 nanosheets into polyaniline fibers produces a decrease in the MoS2 interlayer distance and a slight increase in the degree of order of the nanocomposites. In addition, an increment in the polaron Raman signature was observed with the addition of MoS2 nanosheets into polyaniline nanocomposites in agreement with the enhancement of the electrical conductivity, i.e. up to ~ 2.5 S cm−1. The addition of low amounts of MoS2 also lead to an increment of the seebeck coefficient (up to 5.3 µV K−1) and power factor (up to 0.0070 µV m−1 K−2). This report showed excellent synergistic effect between PANI and MoS2 nanosheets which could be of great importance for future applications of these nanocomposites, mainly as thermoelectric materials.

Notes

Acknowledgements

The authors wish to thank the Uruguayan ANII, CSIC and PEDECIBA funding institutions. We would like to thank technical support of Alvaro Olivera and the collaboration of Laura Fornaro at GDMEA-CURE high-resolution transmission electron microscopy laboratory. We would also like to thank financial support of EQC-X-2012-1-14 and LNLS-CNPEM-20160543 research projects, as well as technical support of the LNLS-CNPEM SAXS-1 station members.

References

  1. 1.
    J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, Y. Xie, Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 133, 17832–17838 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Ma, D. Lei, L. Mei, X. Duan, Q. Li, T. Wang, W. Zheng, Plate-like SnS2 nanostructures: hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm 14, 832–836 (2012)CrossRefGoogle Scholar
  3. 3.
    K.-J. Huang, L. Wang, Y.-J. Liu, T. Gan, Y.-M. Liu, L.-L. Wang, Y. Fan, Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim. Acta 107, 379–387 (2013)CrossRefGoogle Scholar
  4. 4.
    K.-J. Huang, L. Wang, J. Li, Y.-M. Liu, Electrochemical sensing based on layered MoS2–graphene composites. Sens. Actuators B 178, 671–677 (2013)CrossRefGoogle Scholar
  5. 5.
    K.-J. Huang, L. Wang, Y.-J. Liu, H.-B. Wang, Y.-M. Liu, L.-L. Wang, Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim. Acta 109, 587–594 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J. Alloy. Compd. 619, 38–43 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Lei, Z. Jiang, X. Lu, G. Nie, C. Wang, Synthesis of few-layer MoS2 nanosheets-wrapped polyaniline hierarchical nanostructures for enhanced electrochemical capacitance performance. Electrochim. Acta 176, 149–155 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Fu, L. Ma, M. Gan, X. Zhang, M. Jin, Y. Lei, P. Yang, M. Yan, Fabrication of 3D Spongia-shaped polyaniline/MoS2 nanospheres composite assisted by polyvinylpyrrolidone (PVP) for high-performance supercapacitors. Synth. Met. 224, 36–45 (2017)CrossRefGoogle Scholar
  9. 9.
    M.S. Nam, U. Patil, B. Park, H.B. Sim, S.C. Jun, A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application. RSC Adv. 6, 101592–101601 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Ren, G. Zhang, Z. Yan, L. Kang, H. Xu, F. Shi, Z. Lei, Z.-H. Liu, Three-dimensional tubular MoS2/PANI hybrid electrode for high rate performance supercapacitor. ACS Appl. Mater. Interfaces 7, 28294–28302 (2015)CrossRefGoogle Scholar
  11. 11.
    L. Hu, Y. Ren, H. Yang, Q. Xu, Fabrication of 3D hierarchical MoS2/polyaniline and MoS2/C architectures for lithium-ion battery applications. ACS Appl. Mater. Interfaces 6, 14644–14652 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Liu, F. Zhang, W. Li, X. Zhang, C.-S. Lee, W. Wang, Y. Tang, Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes. Electrochim. Acta 167, 132–138 (2015)CrossRefGoogle Scholar
  13. 13.
    B. Swastibrata, P. Tribhuwan, K.S. Abhishek, Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2. Nanotechnology 25, 465701 (2014)CrossRefGoogle Scholar
  14. 14.
    D.D. Fan, H.J. Liu, L. Cheng, P.H. Jiang, J. Shi, X.F. Tang, MoS2 nanoribbons as promising thermoelectric materials. Appl. Phys. Lett. 105, 133113 (2014)CrossRefGoogle Scholar
  15. 15.
    H. Babaei, J.M. Khodadadi, S. Sinha, Large theoretical thermoelectric power factor of suspended single-layer MoS2. Appl. Phys. Lett. 105, 193901 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Liu, G.-M. Choi, D.G. Cahill, Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic kerr effect. J. Appl. Phys. 116, 233107 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Mansfield, S.A. Salam, Electrical properties of molybdenite. Proc. Phys. Soc. Sect. B 66, 377–385 (1953)CrossRefGoogle Scholar
  18. 18.
    S.R.G. Thakurta, A.K. Dutta, Electrical conductivity, thermoelectric power and hall effect in p-type molybdenite (MoS2) Crystal. J. Phys. Chem. Solids 44, 407–416 (1983)CrossRefGoogle Scholar
  19. 19.
    J. Xiang, L.T. Drzal, Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties. Polymer 53, 4202–4210 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Du, S.Z. Shen, W. Yang, R. Donelson, K. Cai, P.S. Casey, Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite. Synth. Met. 161, 2688–2692 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, L. Chen, Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J. Mater. Chem. A 2, 11107–11113 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Lu, Y. Song, F. Wang, Thermoelectric properties of graphene nanosheets-modified polyaniline hybrid nanocomposites by an in situ chemical polymerization. Mater. Chem. Phys. 138, 238–244 (2013)CrossRefGoogle Scholar
  23. 23.
    Y. Zhao, G.-S. Tang, Z.-Z. Yu, J.-S. Qi, The effect of graphite oxide on the thermoelectric properties of polyaniline. Carbon 50, 3064–3073 (2012)CrossRefGoogle Scholar
  24. 24.
    L. Wang, D. Wang, G. Zhu, J. Li, F. Pan, Thermoelectric properties of conducting polyaniline/graphite composites. Mater. Lett. 65, 1086–1088 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Muralikrishna, K. Manjunath, D. Samrat, V. Reddy, T. Ramakrishnappa, D.H. Nagaraju, Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv. 5, 89389–89396 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H.-C. Cheng, H. Wu, Y. Huang, X. Duan, Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014)CrossRefGoogle Scholar
  27. 27.
    X. Zhang, H. Tang, M. Xue, C. Li, Facile synthesis and characterization of ultrathin MoS2 nanosheets. Mater. Lett. 130, 83–86 (2014)CrossRefGoogle Scholar
  28. 28.
    J.P. Pouget, M.E. Jozefowicz, A.J. Epstein, X. Tang, A.G. MacDiarmid, X-ray structure of polyaniline. Macromolecules 24, 779–789 (1991)CrossRefGoogle Scholar
  29. 29.
    W.L. Zhang, B.J. Park, H.J. Choi, Colloidal graphene oxide/polyaniline nanocomposite and its electrorheology. Chem. Commun. 46, 5596–5598 (2010)CrossRefGoogle Scholar
  30. 30.
    R. Wei, H. Yang, K. Du, W. Fu, Y. Tian, Q. Yu, S. Liu, M. Li, G. Zou, A facile method to prepare MoS2 with nanoflower-like morphology. Mater. Chem. Phys. 108, 188–191 (2008)CrossRefGoogle Scholar
  31. 31.
    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Func. Mater. 22, 1385–1390 (2012)CrossRefGoogle Scholar
  32. 32.
    M.C. Bernard, A. Hugot-Le, Goff, Quantitative characterization of polyaniline films using Raman spectroscopy: I: polaron lattice and bipolaron. Electrochim. Acta 52, 595–603 (2006)CrossRefGoogle Scholar
  33. 33.
    M. Trchová, Z. Morávková, M. Bláha, J. Stejskal, Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim. Acta 122, 28–38 (2014)CrossRefGoogle Scholar
  34. 34.
    D. Mombrú, M. Romero, R. Faccio, J. Castiglioni, A.W. Mombrú, In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications. J. Solid State Chem. 250, 60–67 (2017)CrossRefGoogle Scholar
  35. 35.
    A.S. Roy, S.G. Hegde, A. Parveen, Synthesis, characterization, AC conductivity, and diode properties of polyaniline-CaTiO3 composites. Polym. Adv. Technol. 25, 130–135 (2014)CrossRefGoogle Scholar
  36. 36.
    R.D. Balikile, A.S. Roy, S.C. Nagaraju, G. Ramgopal, Conductivity properties of hollow ZnFe2O4 nanofibers doped polyaniline nanocomposites. J. Mater. Sci. Mater. Electron. 28, 7368–7375 (2017)CrossRefGoogle Scholar
  37. 37.
    J.N. Ansari, S. Khasim, A. Parveen, O.A. Al-Hartomy, Z. Khattari, N. Badi, Synthesis, characterization, dielectric and rectification properties of PANI/Nd2O3:Al2O3 nanocomposites. Polym. Adv. Technol. 27, 1064–1071 (2016)CrossRefGoogle Scholar
  38. 38.
    F.T. Reis, L.F. Santos, R.M. Faria, D. Mencaraglia, Temperature dependent impedance spectroscopy on polyaniline based devices. IEEE Trans. Dielectr. Electr. Insul. 13, 1074–1081 (2006)CrossRefGoogle Scholar
  39. 39.
    D. Ashis, D. Sukanta, D. Amitabha, S.K. De, Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15, 1277 (2004)CrossRefGoogle Scholar
  40. 40.
    P. Dutta, P.M. Horn, Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981)CrossRefGoogle Scholar
  41. 41.
    M.G. Kanatzidis, R. Bissessur, D.C. DeGroot, J.L. Schindler, C.R. Kannewurf, New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in molybdenum disulfide. Chem. Mater. 5, 595–596 (1993)CrossRefGoogle Scholar
  42. 42.
    L. Wang, J. Schindler, J.A. Thomas, C.R. Kannewurf, M.G. Kanatzidis, Entrapment of polypyrrole chains between MoS2 layers via an in situ oxidative polymerization encapsulation reaction. Chem. Mater. 7, 1753–1755 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro NanoMat/CryssMat-Lab./Física - DETEMA - Facultad de QuímicaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations