Advertisement

Effect of surface modified SiO2 powders on microwave absorbing properties of flaky FeSiAl coatings

  • Guojia Ma
  • Yuping Duan
  • Yi Liu
  • Shaohua Gao
Article
  • 57 Downloads

Abstract

Flake FeSiAl (FFSA) powders were used as absorbent in absorption coatings with a thickness of 1 mm. Two types of SiO2 powders (DNS-2, RNS-A) were added to the coatings in order to improve the impedance matching and the absorption properties. The electromagnetic parameters of FFSA and two types of SiO2 powders were measured by transmission/reflection technology, and the reflection loss of coatings was measured by the arch method in the frequency range of 2–18 GHz. The effect of FFSA content on the microwave absorbing properties was analyzed. And as the content increases, the effective absorption bandwidth (RL ≤ − 10 dB) firstly increases and then decreases and the absorbing peak shifts to lower frequency ranges. Then the absorbing properties of the FFSA/SiO2 coatings were investigated. The results show that the microwave absorption performance was improved significantly when the appropriate amount of SiO2 powder was added to the coating. The minimum reflection loss decreased by 10 dB (DNS-2) and 24.3 dB (RNS-A), respectively. The effective absorption bandwidth (RL ≤ − 10 dB) increased by 2 GHz and 1.8 GHz. The interface polarization and SiO2-channel models were built to analyse the enhanced microwave absorption mechanism of the coatings.

Notes

Acknowledgements

The authors acknowledge the Supported by Program for the National Natural Science Foundation of China (No. 51577021, U1704253), the National Key R&D Program of China (2017YFB0703103), the Fundamental Research Funds for the Central Universities (DUT17GF107), the Industry-University-Research Collaboration Project of Aviation Industry Corporation of China (cxy2103DLLG34).

References

  1. 1.
    M. Zhang, J. Zhang, X. Lv et al. How to exhibit the efficient electromagnetic wave absorbing performance of RGO aerogels: less might be better. J. Mater. Sci.: Mater. Electron. 29, 1–5 (2018)Google Scholar
  2. 2.
    B. Zhang, Y. Duan, Y. Cui et al., Improving electromagnetic properties of FeCoNiSi0. 4Al0. 4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173–183 (2018)CrossRefGoogle Scholar
  3. 3.
    Q. Yuchang, W. Qinlong, L. Fa et al., Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J. Mater. Chem. C 4(2), 371–375 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Wei, H. Liu, S. Liu et al. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 9, 70–75 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Liu, J. Wu, J. He et al., Electromagnetic interference shielding effectiveness of titanium carbide sheets. Mater. Lett. 205, 261–263 (2017)CrossRefGoogle Scholar
  6. 6.
    P. Yang, Y. Liu, X. Zhao et al., Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27(4), 1128–1133 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Li, Y. Zhang, J. Chen et al., Composite coatings reinforced with carbonyl iron nanoparticles: preparation and microwave absorbing properties. Mater. Technol. 29(1), 57–64 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Duan, W. Liu, L. Song et al., A discrete structure: FeSiAl/carbon black composite absorption coatings. Mater. Res. Bull. 88, 41–48 (2017)CrossRefGoogle Scholar
  9. 9.
    L. Huang, X. Liu, D. Chuai et al., Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption. Sci. Rep. 6, 35377 (2016)CrossRefGoogle Scholar
  10. 10.
    G.Y. Lee, S.K. Kwon, J.S. Lee, Annealing effect on microstructure and magnetic properties of flake-shaped agglomerates of Ni-20 wt% Fe nanopowder. J. Alloys Compd. 613, 164–169 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, T. Zhou, Structure and electromagnetic properties of FeSiAl particles coated by MgO. J. Magn. Magn. Mater. 426, 680–684 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Qing, D. Min, Y. Zhou et al., Graphene nanosheet- and flake carbonyl iron particle-filled epoxy-silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Feng, C. Tang, T. Qiu, Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites. Mater. Sci. Eng. B 178(16), 1005–1011 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Wei, L. Zhang, C. Gong et al., Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J. Alloys Compd. 735, 1488–1493 (2018)CrossRefGoogle Scholar
  15. 15.
    X.J. Zhang, G.S. Wang, W.Q. Cao et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6(10), 7471–7478 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Wang, Y. Huang, X. Sun et al., Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6(6), 3157–3164 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Shuan-Qin, Study on the electromagnetic properties of a coated radar absorbent. Chin. Phys. B 21(6), 065101 (2012)CrossRefGoogle Scholar
  18. 18.
    M.B. Kala, P.K. Bandyopadhyay, B.B. Nautiyal, Thorium free antireflection coating in MWIR region on Silicon optics. Infrared Phys. Technol. 55(5), 409–411 (2012)CrossRefGoogle Scholar
  19. 19.
    M.S. Cao, X.L. Shi, X.Y. Fang et al., Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91(20), 203110 (2007)CrossRefGoogle Scholar
  20. 20.
    L. Chen, Y. Duan, L. Liu et al., Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater. Des. 32(2), 570–574 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Li, Z. Cao, Z. Zhang et al., Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl. Surf. Sci. 252(22), 7856–7861 (2006)CrossRefGoogle Scholar
  22. 22.
    X. Li, Z. Cao, F. Liu et al., A novel method of preparation of superhydrophobic nanosilica in aqueous solution. Chem. Lett. 35(1), 94–95 (2005)CrossRefGoogle Scholar
  23. 23.
    Q. Li, Z. Feng, S. Yan et al., Electromagnetic properties and impedance matching effect of Flaky Fe-Si-Al/Co2Z ferrite composite. J. Electron. Mater. 43(9), 3688–3694 (2014)CrossRefGoogle Scholar
  24. 24.
    G. Shen, M. Xu, Z. Xu, Double-layer microwave absorber based on ferrite and short carbon fiber composites. Mater. Chem. Phys. 105(2–3), 268–272 (2007)CrossRefGoogle Scholar
  25. 25.
    J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica 14(4), 207–217 (1948)CrossRefGoogle Scholar
  26. 26.
    J. Deng, S. Li, Y. Zhou et al., Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J. Colloid Interface Sci. 509, 406–413 (2018)CrossRefGoogle Scholar
  27. 27.
    P. Liu, Y. Huang, J. Yan et al., Magnetic graphene@ PANI@ porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J. Mater. Chem. C 4(26), 6362–6370 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Huo, L. Wang, H. Yu, Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci. 44(15), 3917–3927 (2009)CrossRefGoogle Scholar
  29. 29.
    Y. Zang, S. Xia, L. Li et al., Microwave absorption enhancement of rectangular activated carbon fibers screen composites. Compos. B 77, 371–378 (2015)CrossRefGoogle Scholar
  30. 30.
    S.M. Matitsine, K.M. Hock, L. Liu et al., Shift of resonance frequency of long conducting fibers embedded in a composite. J. Appl. Phys. 94(2), 1146–1154 (2003)CrossRefGoogle Scholar
  31. 31.
    P.C. Fannin, S.W. Charles, D. Vincent et al., Measurement of the high-frequency complex permittivity and conductivity of magnetic fluids. J. Magn. Magn. Mater. 252, 80–82 (2002)CrossRefGoogle Scholar
  32. 32.
    A.N. Yusoff, M.H. Abdullah, S.H. Ahmad et al., Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92(2), 876–882 (2002)CrossRefGoogle Scholar
  33. 33.
    B. Wen, M.S. Cao, Z.L. Hou et al., Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013)CrossRefGoogle Scholar
  34. 34.
    Y. Zhang, W. Liu, B. Quan et al., Achieving the interfacial polarization on C/Fe3C heterojunction structures for highly efficient lightweight microwave absorption. J. Colloid Interface Sci. 508, 462–468 (2017)CrossRefGoogle Scholar
  35. 35.
    X. Zhang, G. Ji, W. Liu et al., A novel Co/TiO2 nanocomposite derived from a metal-organic framework: synthesis and efficient microwave absorption. J. Mater. Chem. C 4(9), 1860–1870 (2016)CrossRefGoogle Scholar
  36. 36.
    Q. Zhang, C. Li, Y. Chen et al., Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite. Appl. Phys. Lett. 97(13), 133115 (2010)CrossRefGoogle Scholar
  37. 37.
    N. Bowler, Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite. IEEE Trans. Dielectr. Electr. Insul. 13(4), 703–711 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Science and Technology on Power Beam Processes LaboratoryManufacturing Technology Institute, AVICBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations