Structure and microwave dielectric properties of a novel low-firing Ba1−xSrxCo2V2O8 ceramics
- 59 Downloads
Abstract
A low-firing BaCo2V2O8 ceramic was prepared by solid-state reaction and its microwave dielectric properties were reported for the first time. The sample calcined at 700 °C exhibited a low relative dielectric constant (εr 16.7) and a high quality factor (Q(u) × f: 73,200 GHz), as well as a poor temperature coefficient of resonator frequency (τf − 41 ppm/°C). In order to obtain a near-zero τf value, Ba1−xSrxCo2V2O8 (x = 0–0.25) ceramics were synthesized by replacing Ba2+ with Sr2+ and the relationship between crystal structure and microwave dielectric properties were studied. The epsilon(r) decreased with the decrease of ionic polarization. The drop in the packing fraction worsened the Q(u) × f values. The varieties in τf values were considered to be closely related to A-site bond valence. Specimen (x = 0.25) fired at 730 °C possess superior microwave dielectric properties: εr 14.6, Q(u) × f = 52,120 GHz and τf − 1.6 ppm/°C.
References
- 1.H. Zheng, S. Yu, L. Li, X. Lyu, Z. Sun, S. Chen, Crystal structure, mixture behavior, and microwave dielectric properties of novel temperature stable (1 − x)MgMoO4 − xTiO2 composite ceramics. J. Eur. Ceram. Soc. 37, 4661–4665 (2017)CrossRefGoogle Scholar
- 2.X.-H. Ma, S.-H. Kweon, S. Nahm, C.-Y. Kang, S.-J. Yoon, Y.-S. Kim, Synthesis and microwave dielectric properties of Bi2Ge3O9 ceramics for application as advanced ceramic substrate. J. Eur. Ceram. Soc. 37, 605–610 (2017)CrossRefGoogle Scholar
- 3.M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)CrossRefGoogle Scholar
- 4.H. Xiang, C. Li, Y. Tang, L. Fang, Two novel ultralow temperature firing microwave dielectric ceramics LiMVO6 (M=Mo, W) and their chemical compatibility with metal electrodes. J. Eur. Ceram. Soc. 37, 3959–3963 (2017)CrossRefGoogle Scholar
- 5.K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1 − x)ZnAl2O4 − xTiO2 system for microwave substrate applications. Eur. Phys. J. B 41, 301–306 (2004)CrossRefGoogle Scholar
- 6.Y. Guo, H. Ohsato, K. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc. 26, 1827–1830 (2006)CrossRefGoogle Scholar
- 7.S. Thomas, M.T. Sebastian, Effect of B2O3-Bi2O3-SiO2-ZnO glass on the sintering and microwave dielectric properties of 0.83 ZnAl2O4-0.17 TiO2. Mater. Res. Bull. 43, 843–851 (2008)CrossRefGoogle Scholar
- 8.J.-S. Kim, M.-E. Song, M.-R. Joung, J.-H. Choi, S. Nahm, J.-H. Paik, B.-H. Choi, H.-J. Lee, Low-temperature sintering and microwave dielectric properties of V2O5-added Zn2SiO4 ceramics. Adv. Mater. Res. 66, 104–107 (2008)Google Scholar
- 9.H. Xiang, L. Fang, W. Fang, Y. Tang, C. Li, A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure. J. Eur. Ceram. Soc. 37, 625–629 (2017)CrossRefGoogle Scholar
- 10.G.q. Zhang, J. Guo, H. Wang, Ultra-low temperature sintering microwave dielectric ceramics based on Ag2O-MoO3 binary system. J. Am. Ceram. Soc. (2017). https://doi.org/10.1111/jace.14760 CrossRefGoogle Scholar
- 11.L. Fang, Z. Wei, C. Su, F. Xiang, H. Zhang, Novel low-firing microwave dielectric ceramics: BaMV2O7 (M=Mg, Zn). Ceram. Int. 40, 16835–16839 (2014)CrossRefGoogle Scholar
- 12.T. Takahiro, S.F. Wang, Y. Shoko, J. Sei-Joo, R.E. Newnham, Effect of glass additions on BaO-TiO2-WO3 microwave ceramics. J. Am. Ceram. Soc. 77, 1909–1916 (1994)CrossRefGoogle Scholar
- 13.M. Udovic, M. Valant, D. Suvorov, Dielectric characterisation of ceramics from the TiO2-TeO2 system. J. Eur. Ceram. Soc. 21, 1735–1738 (2001)CrossRefGoogle Scholar
- 14.H. Guo, Z. Wei, C. Li, Y. Tang, L. Fang, Effects of sintering temperature and Ca substitution on microwave dielectric properties of Mg3V2O8. J. Mater. Sci. Mater. Electron. 26, 5342–5346 (2015)CrossRefGoogle Scholar
- 15.R. Umemura, H. Ogawa, A. Kan, Low temperature sintering and microwave dielectric properties of (Mg3 − xZnx)(VO4)2 ceramics. J. Eur. Ceram. Soc. 26, 2063–2068 (2006)CrossRefGoogle Scholar
- 16.M.R. Joung, J.S. Kim, M.E. Song, J.H. Choi, J.W. Sun, S. Nahm, J.H. Paik, B.H. Choi, Effect of Li2CO3 addition on the sintering temperature and microwave dielectric properties of Mg2V2O7 ceramics. J. Am. Ceram. Soc. 92, 2151–2154 (2009)CrossRefGoogle Scholar
- 17.M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, Low-temperature sintering and microwave dielectric properties of the Li2CO3-added Ba2V2O7 ceramics. J. Am. Ceram. Soc. 93, 934–936 (2010)CrossRefGoogle Scholar
- 18.M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, Microstructure and microwave dielectric properties of the Li2CO3-added Sr2V2O7 ceramics. J. Am. Ceram. Soc. 93, 2132–2135 (2010)CrossRefGoogle Scholar
- 19.C. Li, H. Xiang, L. Fang, Temperature stable microwave dielectric ceramics in LiCa3−xSrxMgV3O12 ceramics. J. Mater. Sci Mater. Electron. 27, 10958–10962 (2016)CrossRefGoogle Scholar
- 20.Y. Wang, R. Zuo, Structure and microwave dielectric properties of Ba1−xSrxMg2V2O8 ceramics, Ceram. Int. 42(9), 10801–10807 2016CrossRefGoogle Scholar
- 21.Z.Z. He, D.S. Fu, T. Kyomen, T. Taniyama, M. Itoh, Crystal growth and magnetic properties of BaCo2V2O8. Chem. Mater. 17, 2924–2926 (2005)CrossRefGoogle Scholar
- 22.M.W. Lufaso, Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM‘2O9 (M=Mg, Ni, Zn; M’=Nb, Ta). Perovskites, Chem. Mater. 16, 2148–2156 (2004)CrossRefGoogle Scholar
- 23.B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
- 24.J.J. Bian, J.Y. Wu, Designing of glass-free LTCC microwave ceramic Ca1−x(Li0.5Nd0.5)xWO4 by crystal chemistry. J. Am. Ceram. Soc. 95, 318–323 (2012)CrossRefGoogle Scholar
- 25.R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
- 26.Y.-C. Chen, Y.-N. Wang, C.-H. Hsu, Enhancement microwave dielectric properties of Mg2SnO4 ceramics by substituting Mg2+ With Ni2+. Mater. Chem. Phys. 133(2), 829–833 (2012)CrossRefGoogle Scholar
- 27.E.S. Kim, B.S. Chun, R. Freer, R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+ B6+ O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731–1736 (2010)CrossRefGoogle Scholar
- 28.Y. Zhang, J. Wang, Z. Yue, Z. Gui, L. Li, Effect of Mg2+ substitution on microstructure and microwave dielectric properties of (Zn1−xsMgx)Nb2O6 ceramics. Ceram. Int. 30, 87–91 (2004)CrossRefGoogle Scholar