Effects of MnFe2O4 nanoparticles on dielectric properties of Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconducting phase

  • M. MumtazEmail author
  • M. Touqeer
  • M. Nasir Khan


Magnetic manganese ferrite (MnFe2O4) nanoparticles were synthesized by sol–gel method and solid-state reaction method was chosen for preparation of the superconducting Cu0.5Tl0.5Ba2Ca2Cu3O10−δ (CuTl-1223) phase. Superconducting-nanoparticles (MnFe2O4)x/CuTl-1223; x = 0–2.0 wt% composites were obtained by adding MnFe2O4 nanoparticles in CuTl-1223 superconducting matrix. The unchanged tetragonal crystal structure of the host CuTl-1223 superconducting phase witnessed that MnFe2O4 nanoparticles were not decomposed and settled at the grain-boundaries. The superconductivity was over all suppressed due to the reduction of superconducting volume fraction and enhanced scattering cross-section of the mobile charge carriers across these magnetic MnFe2O4 nanoparticles settled at the grain-boundaries of the host superconducting CuTl-1223 phase. The frequency dependent dielectric properties of (MnFe2O4)x/CuTl-1223 composites were probed at different operating temperatures. Different dielectric parameters (i.e. ɛr, ɛr, tanδ and σac) were determined from the experimentally measured capacitance (C) and conductance (G). The variation of these dielectric properties of CuTl-1223 superconducting phase with the variation of test frequency, contents of MnFe2O4 nanoparticles and operating temperature were investigated, correlated, compared and explained. These investigations can be very useful for the selection criteria of the materials for the practical applications.


  1. 1.
    M. Hasan, M.C. Nguyen, H. Kim, S.W. You, Y.S. Jeon, D.T. Tong, D.H. Lee, J.K. Jeong, R. Choi, High performance solution processed zirconium oxide gate dielectric appropriate for low temperature device application. Thin Solid Films 589, 90 (2015)CrossRefGoogle Scholar
  2. 2.
    T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, L.L. Jiang, L. Luo, Optical and dielectric properties of PbZrO3 thin films prepared by a sol–gel process for energy storage application. J. Mater. Des. 90, 410 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Jarvid, A. Johansson, R. Kroon, J.M. Bjuggren, H. Wutzel, V. Englund, S. Gubanski, M.R. Andersson, C. Muller, A new application area for fullerenes: voltage stabilizers for power cable insulation. J. Adv. Mater. 27, 897 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Nawazish, M. Khan, Mumtaz, A.A. Khurram, Frequency dependent dielectric properties of Cu0.5Tl0.5Ba2Ca2Cu3–yZnyO10−δ (y = 0, 1.0, 1.5, 2.0, 2.5) superconductors. J. Appl. Phys. 104, 033916 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Cavdar, H. Koralay, N. Tugluoglu, A. Gunen, Frequency-dependent dielectric characteristics of Tl–Ba–Ca–Cu–O bulk superconductor. Supercond. Sci. Technol. 18, 1204 (2005)CrossRefGoogle Scholar
  6. 6.
    P. Ben-Ishai, E. Sader, Y. Feldman, I. Felner, M. Weger, Dielectric properties of Na0.7CoO2 and of the superconducting Na0.3CoO2·1.3 H2O. J. Supercond. 18, 455 (2005)CrossRefGoogle Scholar
  7. 7.
    M. Nikolo, R.B. Goldfarb, Flux creep and activation energies at the grain boundaries of Y-Ba-Cu-O superconductors. Phys. Rev. B 39, 6615 (1989)CrossRefGoogle Scholar
  8. 8.
    L.L. Hench, J.K. West, Principles of Electronic Ceramics, 1st edn. (Wiley, New York, 1990)Google Scholar
  9. 9.
    L. Li, C. Richter, S. Paetel, T. Kopp, J. Mannhart, R.C. Ashoori, Very large capacitance enhancement in two-dimensional electron system. Solid State Mater. Sci. 332, 825 (2011)Google Scholar
  10. 10.
    M.S. Vijaya, G. Rangarajan, Materials Science, 1st edn. (Tata Mc Graw Hill Publishing Co Ltd, New Delhi, 2004)Google Scholar
  11. 11.
    X. Xu, Z. Jiao, M. Fu, L. Feng, K. Xu, R. Zuo, X. Chen, Dielectric studies in a layered Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+δ. Physica C 417, 166 (2005)CrossRefGoogle Scholar
  12. 12.
    N.H. Mohammad, Effect of MgO nano-oxide additions on the superconductivity and dielectric properties of Cu0.25Tl0.75Ba2Ca3Cu4O12−δ superconducting phase. J. Supercond. Nov. Magn. 25, 45 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Mumtaz, M. Kamran, K. Nadeem, A. Jabbar, N.A. Khan, A. Saleem, S.T. Hussain, M. Kamran, Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites. J. Low Temp. Phys. 39, 622 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Mumtaz, L. Ali, S. Azeem, S. Ullah, G. Hussain, M.W. Rabbani, A. Jabbar, K. Nadeem, Dielectric properties of (Zn)x/CuTl-1223 nanoparticles-superconductor composites. J Adv. Ceram. 5(2), 159–166 (2016)CrossRefGoogle Scholar
  15. 15.
    M. Mumtaz, M.A. Asghar, Dielectric properties of ferromagnetic Ni nanoparticles added (Cu0.5Tl0.5)Ba2Ca2Cu3O10−δ superconducting phase. Low Temp. Phys./Fizika Nizkikh Temp. 44(8), 970–976 (2018)Google Scholar
  16. 16.
    M. Mumtaz, L. Ali, A. Jabbar, M.W. Rabbani, M. Naveed, M. Imran, B. Amin, M. Nasir, Khan, M. Usman Sajid, Tuning of dielectric properties of (ZnO)x-CuTl-1223 nanoparticles-superconductor composites. Ceram. Int. 42, 11193–11200 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Imran, M. Mumtaz, M. Naveed, M. Nasir Khan, Role of Co3O4 nanoparticles in dielectric properties of Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconducting phase. J. Low Temp. Phys. 192, 201–211 (2018)CrossRefGoogle Scholar
  18. 18.
    M. Mumtaz, L. Ali, M. Nasir Khan, M. Usman Sajid, Tuning of dielectric parameters of (NiFe2O4)x/CuTl-1223 nano-superconductor composites by temperature and frequency. J. Supercond. Nov. Magn. 29, 1181–1186 (2016)CrossRefGoogle Scholar
  19. 19.
    C.M. Rey, H. Mathias, L.R. Testardi, S. Skirius, High dielectric constant and nonlinear electric response in nonmetallic YBa2Cu3O6+δ. Phys. Rev. B 45, 10639 (1992)CrossRefGoogle Scholar
  20. 20.
    G.P. Mazzara, S. Skirius, G. Cao, G. Chern, R.J. Clark, J.E. Crow, H. Mathias, J.W.O. Reilly, L.R. Testardi, High dielectric permittivity of ceramic and single-crystal PrBa2Cu3Ox. Phys. Rev. B 47, 8119 (1993)CrossRefGoogle Scholar
  21. 21.
    G. Cao, J.W.O. Reilly, J.E. Crow, L.R. Testardi, Enhanced electric polarizibilty at the magnetic ordering temperature of La2CuO4+x. Phys. Rev. B 47, 11510 (1993)CrossRefGoogle Scholar
  22. 22.
    J.W. Chen, J.C. Wang, Y.F. Chen, Study of dielectric relaxation behavior in Nd2CuO4. Physica C 289, 131 (1997)CrossRefGoogle Scholar
  23. 23.
    J.B. Shi, Dielectric studies in T* and T′ structures of (La, Gd)2CuO4. Physica C 305, 35 (1998)CrossRefGoogle Scholar
  24. 24.
    R. Khan, M. Mumtaz, Superconducting properties of (MnFe2O4)x/CuTl-1223 composites. J. Nanotech. Mater. Sci. 4, 1 (2017)Google Scholar
  25. 25.
    K.W. Wagner, Theory of imperfect dielectrics. Ann. Phys. 345, 817 (1913)CrossRefGoogle Scholar
  26. 26.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  27. 27.
    D. Kaur, S.B. Narang, K.S. Thind, Processing, dielectric behavior and conductivity of some complex tungsten-bronze dielectric ceramics. J. Ceram. Process. Res. 7, 31 (2006)Google Scholar
  28. 28.
    M.N. Kamalasanan, N.D. Kumar, S. Chandra, Dielectric and ferroelectric properties of BaTiO3 thin films grown by the sol-gel process. J. Appl. Phys. 74, 5679 (1993)CrossRefGoogle Scholar
  29. 29.
    R.E. Cohen, Theory of ferroelectrics: a vision for the next decade and beyond. J. Phys. Chem. Solids 61, 139 (2000)CrossRefGoogle Scholar
  30. 30.
    W. Kleemann, J. Dec, Y.G. Wang, P. Lehnen, S. Prosandeev, Phase transitions and relaxor properties of doped quantum paraelectrics. J. Phys. Chem. Solids 61, 167 (2000)CrossRefGoogle Scholar
  31. 31.
    S.A. Saafan, S.T. Assar, Dielectric behavior of nano-structured and bulk Li Ni Zn ferrite samples. J. Magn. Magn. Mater. 324, 2989 (2012)CrossRefGoogle Scholar
  32. 32.
    M. Naveed, M. Mumtaz, R. Khan, A.A. Khan, M. Nasir Khan, Conduction mechanism and impedance spectroscopy of (MnFe2O4)x/CuTl-1223 nanoparticles-superconductor composites. J. Alloys Comp. 712, 696 (2017)CrossRefGoogle Scholar
  33. 33.
    H. Zhang, S.-S. Yu, H.-B. Duan, A hybrid crystal with high dielectric constant and relaxation dielectric behavior. Inorg. Chem. Commun. 93, 1–5 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of Physics, Faculty of Basic and Applied Sciences (FBAS)International Islamic University (IIU)IslamabadPakistan
  2. 2.Central Diagnostic LaboratoryPhysics Division PINSTECHIslamabadPakistan

Personalised recommendations