Advertisement

Influence of coronene addition on some superconducting properties of bulk MgB2

  • O. Erdem
  • G. Kirat
Article

Abstract

This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.

Notes

Acknowledgements

The Scientific Research Coordination Found of Bayburt University, Bayburt, Turkey, supported this study with Project No: 2015/2-03. Sample production was carried out at Low Temperature Physics Laboratory in Karadeniz Technical University, Trabzon, Turkey. Magnetoresistivity measurements were performed at Scientific and Technological Research Centre in İnönü University, Malatya, Turkey.

References

  1. 1.
    J.B.X. Devotta, M.G. Rabbani, Energy Convers. Manag. 41, 493–504 (2000)CrossRefGoogle Scholar
  2. 2.
    D.U. Gubser, Physica C 392–396, 1192 (2003)CrossRefGoogle Scholar
  3. 3.
    K. Kajikawa, Y. Uchida, T. Nakamura et al., IEEE Trans. Appl. Supercond. 23, 5201604 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Yamamoto, A. Ishihara, M. Tomita, K. Kishio, Appl. Phys. Lett. 105, 032601 (2014)CrossRefGoogle Scholar
  5. 5.
    N. Koshizuka, Physica C 445–448, 1103 (2006)CrossRefGoogle Scholar
  6. 6.
    N. Koshizuka, F. Ishikawa, H. Nasu, M. Murakami et al., Physica C 378–381, 11 (2002)CrossRefGoogle Scholar
  7. 7.
    M. Maeda, J.H. Kim, Y. Zhao, Y.U. Heo, K. Takase, Y. Kubota, C. Moriyoshi, F. Yoshida, Y. Kuroiwa, S.X. Dou, J. Appl. Phys. 109, 023904 (2011)CrossRefGoogle Scholar
  8. 8.
    J.H. Kim, S. Oh, Y.-U. Heo, S. Hata, H. Kumakura et al., NPG Asia Mater. 4, e3 (2012)CrossRefGoogle Scholar
  9. 9.
    S.J. Ye, A. Matsumoto, Y.C. Zhang, H. Kumakura, Supercond. Sci. Technol. 27, 085012 (2014)CrossRefGoogle Scholar
  10. 10.
    S.J. Ye, H. Takigawa, A. Matsumoto, H. Kumakura, IEEE Trans. Appl. Supercond. 25, 6200807 (2015)Google Scholar
  11. 11.
    M. Kodama, T. Suzuki, H. Tanaka et al., Supercond. Sci. Technol. 30, 044006 (2017)CrossRefGoogle Scholar
  12. 12.
    O. Erdem, M. Abdioglu, S.B. Guner, S. Celik, T. Kucukomeroglu, J. Alloys Compd. 727, 1213 (2017)CrossRefGoogle Scholar
  13. 13.
    R.C. Ma, W.H. Song, X.B. Zhu, L. Zhang, S.M. Liu, J. Fang, J.J. Du et al., Physica C 405, 34 (2004)CrossRefGoogle Scholar
  14. 14.
    T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Appl. Phys. Lett. 54, 763 (1989)CrossRefGoogle Scholar
  15. 15.
    R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)CrossRefGoogle Scholar
  16. 16.
    A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, F. Holtzberg, in Strong Correlation and Superconductivity, vol. 89. (Springer, Berlin, 1989), p. 349CrossRefGoogle Scholar
  17. 17.
    M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci.: Mater. Electron. 24, 392 (2013)Google Scholar
  18. 18.
    K. Öztürk, Ş Çelik, E. Yanmaz, B. Savaşkan, Phys. Status Solidi A 204, 3478 (2007)CrossRefGoogle Scholar
  19. 19.
    O. Ozturk, E. Asikuzun, S. Kaya, N.S. Koc, M. Erdem, J. Supercond. Nov. Magn. 30, 1161 (2017)CrossRefGoogle Scholar
  20. 20.
    S. Vinu, P.M. Sarun, R. Shabna, U. Syamaprasad, J. Alloys Compd. 487, 1 (2009)CrossRefGoogle Scholar
  21. 21.
    P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)CrossRefGoogle Scholar
  22. 22.
    P.W. Anderson, Y.B. Kim, Rev. Mod. Phys. 36, 39 (1964)CrossRefGoogle Scholar
  23. 23.
    C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)CrossRefGoogle Scholar
  24. 24.
    G.B. Smith, J.M. Bell, S.W. Filipczuk, C. Andrikidis, Physica C 160, 333 (1989)CrossRefGoogle Scholar
  25. 25.
    M. Inui, P.B. Littlewood, S.N. Coppersmith, Phys. Rev. Lett. 63, 2421 (1989)CrossRefGoogle Scholar
  26. 26.
    N.V. Vo, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 9, 104 (1996)CrossRefGoogle Scholar
  27. 27.
    J.H. Kim, S.X. Dou, D.Q. Shi, M. Rindfleisch, M. Tomsic, Supercond. Sci. Technol. 20, 1026 (2007)CrossRefGoogle Scholar
  28. 28.
    H. Kitaguchi, A. Matsumoto, H. Hatakeyama, H. Kumakura, Supercond. Sci. Technol. 17, S486 (2004)CrossRefGoogle Scholar
  29. 29.
    E. Taylan Koparan, A. Surdu, A. Sidorenko, E. Yanmaz, J. Supercond. Nov. Magn. 25, 2235 (2012)CrossRefGoogle Scholar
  30. 30.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  31. 31.
    M. Muralidhar, M. Higuchi, M. Jirsa et al., IEEE Trans. Appl. Supercond. 27, 6201104 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Eisterer, Supercond. Sci. Technol. 20, R47 (2007)CrossRefGoogle Scholar
  33. 33.
    S.X. Dou et al., J. Appl. Phys. 94, 1850 (2003)CrossRefGoogle Scholar
  34. 34.
    I. Shigeta, T. Abiru, K. Abe, A. Nishida, Y. Matsumoto, Physica C 392–396, 359 (2003)CrossRefGoogle Scholar
  35. 35.
    T. Goto, K. Inagaki, K. Watanabe, Physica C 330, 51 (2000)CrossRefGoogle Scholar
  36. 36.
    T. Higuchi, S.I. Yoo, M. Murakami, Phys. Rev. B 59, 1514 (1999)CrossRefGoogle Scholar
  37. 37.
    S. Sudesh, C. Das, G.D. Bernhard, Varma, Physica C 509, 49 (2015)CrossRefGoogle Scholar
  38. 38.
    T. Matsushita, M. Kiuchi, A. Yamamoto, J. Shimoyama, K. Kishio, Supercond. Sci. Technol. 21, 015008 (2008)CrossRefGoogle Scholar
  39. 39.
    J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003)CrossRefGoogle Scholar
  40. 40.
    Y. Eltsev, S. Lee, K. Nakao, N. Chikumoto, S. Tajima et al., Phys. Rev. B 65, 140501 (2002)CrossRefGoogle Scholar
  41. 41.
    C.M. Lee, S.M. Hwang, K. Sung et al., IEEE Trans. Appl. Supercond. 20, 1593 (2010)CrossRefGoogle Scholar
  42. 42.
    Y. Ding, H.C. Wang, F.X. Zhao, Z.X. Shi, Z.L. Zhang, L. Ma, H.L. Suo, J. Supercond. Nov. Magn. 23, 633 (2010)CrossRefGoogle Scholar
  43. 43.
    C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)CrossRefGoogle Scholar
  44. 44.
    M. Muralidhar, K. Nozaki, H. Kobayashi et al., J. Alloys Compd. 649, 833 (2015)CrossRefGoogle Scholar
  45. 45.
    D. Tripathi, S.S. Moharana, T.K. Dey, Cryogenics 63, 85 (2014)CrossRefGoogle Scholar
  46. 46.
    T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621 (1990)CrossRefGoogle Scholar
  47. 47.
    H. Zhang, Y. Liu, H.L. Li, J.F. Qu, X.G. Li, Y. Feng, Supercond. Sci. Technol. 18, 1317 (2005)CrossRefGoogle Scholar
  48. 48.
    M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 25, 961 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Services and Techniques, Bayburt Vocational High School of Health ServicesBayburt UniversityBayburtTurkey
  2. 2.Department of Physics, Faculty of Science and ArtInonu UniversityMalatyaTurkey

Personalised recommendations