Advertisement

Persistent luminescence of Zn2GeO4:Mn2+/Pr3+ phosphors

  • Xiao-Yu Sun
  • Zheng He
  • Xuan Gu
Article
  • 113 Downloads

Abstract

Zn2GeO4, Zn2GeO4:Mn2+, Zn2GeO4:Pr3+ and Zn2GeO4:Mn2+/Pr3+ phosphors were fabricated by a solid state reaction. The phase and luminescent properties of the fabricated phosphors were investigated. The XRD patterns show that all of the fabricated phosphors have an orthorhombic structure. The fabricated Zn2GeO4 shows an emission band in the range of 350–550 nm. The fabricated Zn2GeO4:Mn2+ and Zn2GeO4:Pr3+ phosphors show emission bands corresponding to Mn2+ and Pr3+ ions, respectively. The fabricated Zn2GeO4:Mn2+/Pr3+ phosphor shows the emission band results from Mn2+ and the codoped Pr3+ enhances the emission intensity of Mn2+. Moreover, Zn2GeO4:Mn2+/Pr3+ phosphor exhibits longer decay time than that of Zn2GeO4:Mn2+. The higher intensity and longer lifetime of Mn2+ emission are induced by the energy transfer from Pr3+ of various vacancies to Mn2+ in Zn2GeO4:Mn2+/Pr3+ phosphors.

Notes

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (No. 11602066).

References

  1. 1.
    T. Aitasalo, P. Dereń, J. Hölsä, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Stręk, J. Solid State Chem. 171, 114 (2003)CrossRefGoogle Scholar
  2. 2.
    K.V.D. Eeckhout, D. Poelman, P.F. Smet, Materials 6, 2789 (2013)CrossRefGoogle Scholar
  3. 3.
    K. Uheda, T. Maruyama, H. Takizawa, T. Endo, J. Alloys Compd. 60, 262 (1997)Google Scholar
  4. 4.
    K. Omria, O.M. Lemine, L.El Mira, Ceram. Int. 43, 6585 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Omria, L. El Mira, Superlattices Microstruct. 40, 24 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Omria, A. Alyamani, L. El Mira, Appl. Phys. A 124, 215 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Pan, L. Ji, J. Lu, R. Pang, L. Wan, S. Huang, Dalton Trans. 45, 9506 (2016)CrossRefGoogle Scholar
  8. 8.
    F. Chi, X. Wei, B. Jiang, Y. Chen, C. Duan, M. Yin, Dalton Trans. 47, 1303 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Qi, L. Zhao, W. Bian, X. Yu, X. Xu, J. Qiu, Chin. Opt. Lett. 15, 081601 (2017)CrossRefGoogle Scholar
  10. 10.
    Y. Li, A. Zhao, C. Chen, C. Zhang, J. Zhang, G. Jia, Dyes Pigments 150, 267 (2018)CrossRefGoogle Scholar
  11. 11.
    X. Gao, C. Li, S. Li, H. Zhang, Z. Li, Y. Hong, J. Sun, J. Lumin. 190, 457 (2017)CrossRefGoogle Scholar
  12. 12.
    H. He, Y. Zhang, Q. Pan, G. Wu, G. Dong, J. Qiu, J. Mater. Chem. C 3, 5419 (2015)CrossRefGoogle Scholar
  13. 13.
    Q. Bai, Z. Wang, P. Li, S. Xu, T. Li, J. Cheng, Z. Yang, Mater. Design 108, 597 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Li, Y. Wang, L. Li, H. Huang, H. Zhao, Z. Hu, Mod. Phys. Lett. B 30, 1650305 (2016)CrossRefGoogle Scholar
  15. 15.
    J. Huang, K. Ding, Y. Hou, X. Wang, X. Fu, Chemsuschem 1, 1011 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Liu, G. Zhang, C.Y. Jimmy, Y. Guo, Dalton Trans. 42, 5092 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Wang, S. Wu, Y. Lv, Z. Lin, Langmuir 30, 8215 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Feng, X. Li, Z. Shao, H. Wang, J. Mater. Chem. A 3, 15274 (2015)CrossRefGoogle Scholar
  19. 19.
    Z.S. Liu, X.P. Jing, L.X. Wang, J. Electrochem. Soc. 154, H500 (2007)CrossRefGoogle Scholar
  20. 20.
    Y. Cong, Y. He, B. Dong, Y. Xiao, L. Wang, Opt. Mater. 42, 506 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Jin, Y. Hu, R. Chen, Y. Fu, G. Ju, Z. Mu, J. Lin, Z. Wang, F. Xue, Q. Zhang, J. Alloys Compd. 623, 255 (2015)CrossRefGoogle Scholar
  22. 22.
    G. Guo, L. Wondraczek, J. Mater. Chem. C 1, 1952 (2013)CrossRefGoogle Scholar
  23. 23.
    Z. Gu, F. Liu, X. Li, Z.W. Pan, Phys. Chem. Chem. Phys. 15, 7488 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Fiaczyk, S. Omagari, A. Meijerink, E. Zych, J. Lumin. 198, 163 (2018)CrossRefGoogle Scholar
  25. 25.
    Q.H. Zhang, J. Wang, Appl. Phys. A 108, 943 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Furusho, J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, Y. Okajima, A. Yamamoto, J. Lumin. 128, 881 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Hölsä, T. Aitasalo, H. Jungner, M. Lastusaari, J. Niittykoski, G. Spano, J. Alloys Compd. 374, 56 (2004)CrossRefGoogle Scholar
  28. 28.
    J.T. Randall, M.H.F. Wilkins, Proc. R. Soc. Lond. A 184, 366 (1945)Google Scholar
  29. 29.
    T. Matsuzawa, Y. Aoki, N. Takeuchi, J. Electrochem. Soc. 143, 2670 (1996)CrossRefGoogle Scholar
  30. 30.
    P. Wang, X. Xu, D. Zhou, X. Yu, J. Qiu, Inorg. Chem. 54, 1690 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Aerospace and Civil EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations