Structural, magnetic and magnetocaloric investigation of La0.67Ba0.33Mn1−xNixO3 (x = 0, 0.025 and 0.075) manganite

  • N. KharratEmail author
  • S. Chihaoui
  • W. Cheikhrouhou-Koubaa
  • M. Koubaa
  • A. Cheikhrouhou


In this paper, we report the structural, magnetic and magnetocaloric properties of Ni-doped La0.67Ba0.33Mn1−xNixO3 (x = 0, 0.025 and 0.075) manganites. Our compounds were synthesized using the sol–gel method. The structural analysis using Rietveld refinement shows that Ni-doped LaBaMnO3 system crystallizes in the rhombohedral symmetry with \({\text{R}}\bar {3}{\text{c}}\) space group. Magnetization measurements versus temperature in a magnetic applied field of 0.05 T reveal that all the compositions exhibit a transition from a ferromagnetic to paramagnetic phase with increasing temperature. A systematic decrease in the transition temperature is clearly observed upon Ni doping and a near room temperature TC (302 K) is achieved with x = 0.075 composition. The maximum magnetic entropy change \(\left( { - ~\Delta {\text{S}}_{{\text{M}}}^{{\hbox{max} }}} \right)\) in a magnetic field change of 5 T is found to be 2.12, 2.78 and 1.78 J/kg K for x = 0, 0.025 and 0.075, respectively. At this value of magnetic field, large relative cooling power values are obtained in our samples, especially for x = 0.075 (271 J/kg) making it a promising candidate for magnetic refrigeration near room temperature.



This study was supported by the Tunisian Ministry of Higher Education and Scientific Research.


  1. 1.
    C. Martin, A. Maignan, M. Hervieu, B. Raveau, Magnetic phase diagrams of L1–xAxMnO3 manganites, L = Pr, Sm; A = Ca, Sr… Phys. Rev. B 60, 12191 (1999)CrossRefGoogle Scholar
  2. 2.
    Y. Sun, W. Tong, Y. Zhang, Large magnetic entropy change above 300 K in La0.70Ca0.20Sr0.10MnO3. J. Magn. Magn. Mater. 232, 205 (2001)CrossRefGoogle Scholar
  3. 3.
    G.C. Lin, Q. Wie, J.X. Zhang, Direct measurement of the magnetocaloric effect in La0.67Ca0.33MnO3. J. Magn. Magn. Mater. 300, 392 (2006)CrossRefGoogle Scholar
  4. 4.
    Y. Regaieg, L. Sicard, J. Monnier, M. Koubaa, S. Ammar-Merah, A. Cheikhrouhou, Magnetic and magnetocaloric properties of La0.85(Na1–xKx)0.15MnO3 ceramics produced by reactive spark plasma sintering. J. Appl. Phys. 115, 17A917 (2014)CrossRefGoogle Scholar
  5. 5.
    O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150 (2002)CrossRefGoogle Scholar
  6. 6.
    E. Brück, Developments in magnetocaloric refrigeration. J. Phys. D 38, R381 (2005)CrossRefGoogle Scholar
  7. 7.
    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)CrossRefGoogle Scholar
  8. 8.
    A.M. Tishin, I. Spichkin, The Magnetocaloric Effect and its Applications (Institute of Physics Publishing, Bristol, 2003)Google Scholar
  9. 9.
    V. Franco, J.S. Blazquez, B. Ingale, A. Conde, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res. 42, 305 (2012)CrossRefGoogle Scholar
  10. 10.
    M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Barnabé, F. Millange, A. Maignan, M. Hervieu, B. Raveau, G. Van Tendeloo, P. Laffez, Barium-based manganites Ln1–xBaxMnO3 with Ln = {Pr, La}: phase transitions and magnetoresistance properties. Chem. Mater. 10, 252 (1998)CrossRefGoogle Scholar
  12. 12.
    H.L. Ju, Y.S. Nam, J.E. Lee, H.S. Shin, Anomalous magnetic properties and magnetic phase diagram of La1–xBaxMnO3. J. Magn. Magn. Mater. 219, 1 (2000)CrossRefGoogle Scholar
  13. 13.
    C. Osthover, P. Grtinberg, R.R. Arons, Magnetic properties of doped {La0.67Ba0.33} {Mn1–yAy}O3, A = Fe, Cr. J. Magn. Magn. Mater. 177–181, 854–855 (1998)CrossRefGoogle Scholar
  14. 14.
    A.A.E.M. Mohamed, B.Hernando, The expected low field magnetocaloric effect of La0.7Ba0.3MnO3 manganite at room temperature. Phys. Lett. A 380, 1763 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Ghodhbane, A. Dhahri, N. Dhahri, E.K. Hlil, J. Dhahri, Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1–xFexO3 compounds with 0 ≤ x ≤ 0.1. J. Alloys Compd. 550, 358 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Xu, M. Meter, P. Das, M.R. Kobischka, U. Hartmann, Perovskite manganites: potential materials for magnetic cooling at or near room temperature. Cryst. Eng. 5, 383 (2002)CrossRefGoogle Scholar
  17. 17.
    S.K. Barik, C. Krishnamoorthi, R. Mahendiran, Effect of Fe substitution on magnetocaloric effect in La0.7Sr0.3Mn1–xFexO3 (0.05 ≤ x ≤ 0.20). J. Magn. Magn. Mater. 323, 1015 (2011)CrossRefGoogle Scholar
  18. 18.
    A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, E.K. Hlil, Enhanced relative cooling power in Ga-doped La0.7(Sr,Ca)0.3MnO3 with ferromagnetic-like canted state. RSC Adv. 6, 54299 (2016)CrossRefGoogle Scholar
  19. 19.
    R. Bellouz, M. Oumezzine, E.K. Hlil, E. Dhahri, Effect of Cr substitution on magnetic and magnetic entropy change of La0.65Eu0.05Sr0.3Mn1–xCrxO3 (0.05 ≤ x ≤ 0.15) rhombohedral nanocrystalline near room temperature. J. Magn. Magn. Mater. 375, 136 (2015)CrossRefGoogle Scholar
  20. 20.
    F. Ben Jemaa, S. Mahmood, M. Ellouze, E.K. Hlil, E. Halouani, Structural, magnetic, and magnetocaloric studies of La0.67Ba0.22Sr0.11Mn1–xCoxO3 manganites. J. Mater. Sci. 50, 620 (2015)CrossRefGoogle Scholar
  21. 21.
    B. Arayedh, S. Kallel, N. Kallel, O. Peña, Influence of non-magnetic and magnetic ions on the MagnetoCaloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M = Cr, Sn, Ti. J. Magn. Magn. Mater. 361, 68 (2014)CrossRefGoogle Scholar
  22. 22.
    C.P. Reshmi, S. Savitha Pillai, K.G. Suresh, M.R. Varma, Room temperature magnetocaloric properties of Ni substituted La0.67Sr0.33MnO3. Solid State Sci. 19, 130 (2013)CrossRefGoogle Scholar
  23. 23.
    T.-L. Phan, Q.T. Tran, P.Q. Thanh, P.D.H. Yen, T.D. Thanh, S.C. Yu, Critical behavior of La0.7Ca0.3Mn1–xNixO3 manganites exhibiting the crossover of first- and second-order phase transitions. Solid State Commun. 184, 40 (2014)CrossRefGoogle Scholar
  24. 24.
    S.H. Hua, P.Y. Zhang, H.F. Yang, S.Y. Zhang, H.L. Ge, The magnetic and magnetocaloric properties of the perovskite La0.7Ca0.3Mn1–xNixO3. J. Magn. 18, 34 (2013)CrossRefGoogle Scholar
  25. 25.
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969)CrossRefGoogle Scholar
  26. 26.
    T. Roisnel, J. Rodriguez-Carvajal, C. Program FULLPROF, LLB-LCSIM (2003)Google Scholar
  27. 27.
    X.S. Ge, Z.Z. Li, W.H. Qi, D.H. Ji, G.D. Tang, L.L. Ding, J.J. Qian, Y.N. Du, Magnetic and electrical transport properties of perovskite manganites Pr0.6Sr0.4MxMn1–xO3 (M = Fe, Co, Ni). AIP Adv. 7, 125002 (2017)CrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  29. 29.
    A. Taylor, X-ray Metallography (Wiley, New York, 1961)Google Scholar
  30. 30.
    Y. Bitla, S.N. Kaul, L.F. Barquin, J. Gutierrez, J.M. Barandiaran, A. Pena, Observation of isotropic-dipolar to isotropic-Heisenberg crossover in Co- and Ni-substituted manganites. New J. Phys. 12, 093039 (2010)CrossRefGoogle Scholar
  31. 31.
    C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)CrossRefGoogle Scholar
  32. 32.
    M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, K. Gobrecht, High-pressure neutron-diffraction study of the metallization process in PrNiO3. Phys. Rev. B 52, 9248 (1995)CrossRefGoogle Scholar
  33. 33.
    M. Oumezzine, O. Peña, S. Kallel, T. Guizouarn, M. Oumezzine, Structural studies and magnetic and transport properties of Cr-substituted La0.67Ba0.33Mn1–xCrxO3 (0 ≤ x ≤ 0.15) perovskites. J. Alloys Compd. 533, 33 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Arrott, Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394 (1957)CrossRefGoogle Scholar
  35. 35.
    S.K. Banerjee, On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)CrossRefGoogle Scholar
  36. 36.
    X. Bohigas, J. Tejada, M.L. Marinez-Sarrion, S. Tripp, R. Black, Magnetic and calorimetric measurements on the magnetocaloric effect in La0.6Ca0.4MnO3. J. Magn. Magn. Mater. 208, 85 (2000)CrossRefGoogle Scholar
  37. 37.
    K.A. Gschneidner Jr., V.K. Pecharsky, Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387 (2000)CrossRefGoogle Scholar
  38. 38.
    S. Mnefgui, A. Dhahri, N. Dhahri, El.K. Hlil, J. Dhahri, The effect deficient of strontium on structural, magnetic and magnetocaloric properties of La0.57Nd0.1Sr0.33–xMnO3 (x = 0.1 and 0.15) manganite. J. Magn. Magn. Mater. 340, 91 (2013)CrossRefGoogle Scholar
  39. 39.
    D.T. Morelli, A.M. Mance, J.V. Mantese, A.L. Micheli, Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79, 373 (1996)CrossRefGoogle Scholar
  40. 40.
    E. Tka, K. Cherif, J. Dhahri, Evolution of structural, magnetic and magnetocaloric propertiesin Sn-doped manganites La0.57Nd0.1Sr0.33Mn1–xSnxO3 (x = 0.05–0.3). Appl. Phys. A 116, 1181 (2014)CrossRefGoogle Scholar
  41. 41.
    A. Dhahri, F.I.H. Rhouma, S. Mnefgui, J. Dhahri, E.K. Hlil, Room temperature critical behavior and magnetocaloric properties of La0.6Nd0.1(CaSr)0.3Mn0.9V0.1O3. Ceram. Int. 40, 459 (2014)CrossRefGoogle Scholar
  42. 42.
    I. Sfifir, A. Ezaami, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties in La0.7–xDyxSr0.3MnO3 manganites (x = 0.00, 0.01 and 0.03). J. Alloys Comp. 696, 760 (2017)CrossRefGoogle Scholar
  43. 43.
    I. Sfifir, H. Ben Khlifa, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Vacancy effect in both calcium and barium on the physical properties of La0.6Ca0.2Ba0.2MnO3 polycrystalline manganite. J. Alloys Comp. 693, 782 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Kharrat
    • 1
    Email author
  • S. Chihaoui
    • 1
  • W. Cheikhrouhou-Koubaa
    • 1
  • M. Koubaa
    • 1
  • A. Cheikhrouhou
    • 1
  1. 1.LT2S Lab, Digital Research Center of SfaxSfax TechnoparkSfaxTunisia

Personalised recommendations