Advertisement

Influence of Mg2+/Ga3+ doping on luminescence of Y3Al5O12:Ce3+ phosphors

  • Yuguo Yang
  • Bing Liu
  • Yuanyuan Zhang
  • Xianshun Lv
  • Lei Wei
  • Jianhua Xu
  • Huadi Zhang
  • Xuping Wang
  • Cong Zhang
  • Jing Li
Article
  • 2 Downloads

Abstract

Mg2+/Ga3+ doped Y3Al5O12:Ce3+ phosphors were synthesized through a solid state reaction. The phase and luminescent of the synthesized phosphors were investigated. For Ga3+ codoped Y2.96Ce0.04Al(5−x)GaxO12 phosphors, the emission intensity increases with the increase of Ga3+ concentration up to Y2.96Ce0.04Al4.80Ga0.20O12 and then decreases with a further increase of Ga3+ concentration, but the emission peak shifts to shorter wavelength continuously in the Ga3+ doping concentration range of 0.05–0.25. For Mg2+/Ga3+ codoped Y2.96Ce0.04Al(4.8−y)Ga0.20MgyO12 phosphors, the emission intensity decreases and the emission peak shifts to longer wavelength continuously in the Mg2+ doping concentration range of 0.02–0.12. The emission spectra of Y2.96Ce0.04Al(4.8−y)Ga0.20MgyO12 phosphors demonstrate that the codoped Mg2+/Ga3+ ions not only induce the enhancement of Y2.96Ce0.04Al5O12 emission intensity but also lead to the red shift of Y2.96Ce0.04Al5O12 emission peak. The decay lifetimes decrease in Mg2+/Ga3+ codoped Y2.96Ce0.04Al5O12 phosphors due to defects formed by substitutions of Y3+ by Mg2+/Ga3+.

Notes

Acknowledgements

This work was supported by the General Program of National Natural Science Foundation of China (51672164 and 51772172); Major Scientific and Technological Innovation Project in Shandong (2018CXGC0412); Natural Science Foundation of Shandong Province (ZR2016EMM12, ZR2017MEM016, ZR2017BEM043, ZR2018BEM023 and ZR2018PEM006); Youth Foundation of Shandong Academy of Sciences (2018QN0033).

References

  1. 1.
    H.K. Yang, H.M. Noh, J.H. Jeong, Solid State Sci. 27, 43 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Wu, Z. Chi, T. He, J. Mater. Sci.: Mater. Electron. 28, 14591 (2017)Google Scholar
  3. 3.
    Y. Mei, W.C. Zheng, R.M. Peng, C.F. Wei, Eur. Phys. J. Appl. Phys. 69, 30702 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Chen, Y. Zhou, W. Xu, J. Zhang, Z. Ji, W. Xiang, J. Mater. Chem. C 4, 1704 (2016)CrossRefGoogle Scholar
  5. 5.
    Q. Meng, Y. Liu, Y. Fu, Y. Zu, Z. Zhou, J. Mol. Struct. 1121, 112 (2018)CrossRefGoogle Scholar
  6. 6.
    L. Chen, X. Chen, F. Liu, H. Chen, H. Wang, E. Zhao, Y. Jiang, T.S. Chan, C.H. Wang, W. Zhang, Y. Wang, S. Chen, Sci. Rep. 5, 11514 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Shang, J. Fan, H. Lian, Y. Zhang, D. Geng, J. Lin, Inorg. Chem. 53, 7748 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Jiang, X. Zhang, H. Tang, S. Zhu, Q. Li, W. Zhang, X. Mi, L. Lu, X. Liu, Mater. Res. Bull. 98, 180 (2018)CrossRefGoogle Scholar
  9. 9.
    J. Zhong, W. Zhao, W. Zhuang, F. Du, Y. Zhou, Y. Yu, L. Wang, J. Alloys Compd. 726, 658 (2017)CrossRefGoogle Scholar
  10. 10.
    M.M. Peng, X.W. Yin, P.A. Tanner, M.G. Brik, P.F. Li, Chem. Mater. 27, 2938 (2015)CrossRefGoogle Scholar
  11. 11.
    Z.X. Qiu, T.T. Luo, J.L. Zhang, W.L. Zhou, L.P. Yu, S.X. Lian, J. Lumin. 158, 130 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Fu, J. Tan, X. Bai, S. Yang, L. You, Z. Du, Opt. Mater. 75, 619 (2018)CrossRefGoogle Scholar
  13. 13.
    X. He, X. Liu, C. You, Y. Zhang, R. Li, R. Yu, J. Mater. Chem. C 4, 10691 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Yang, J. Li, B. Liu, Y. Zhang, X. Lv, L. Wei, X. Wang, J. Xu, H. Yu, Y. Hu, H. Zhang, L. Ma, J. Wang, Chem. Phys. Lett. 685, 89 (2017)CrossRefGoogle Scholar
  15. 15.
    D. Jia, Y. Wang, X. Guo, K. Li, Y.K. Zou, W. Jia, J. Electrochem. Soc. 154, J1 (2007)CrossRefGoogle Scholar
  16. 16.
    J.Y. Zhong, W.D. Zhuang, X.R. Xing, R.H. Liu, Y.F. Li, Y.H. Liu, Y.S. Hu, J. Alloys Compd. 674, 93 (2016)CrossRefGoogle Scholar
  17. 17.
    J.M. Ogiegło, A. Katelnikovas, A. Zych, T. Justel, A. Meijerink, C.R. Ronda, J. Phys. Chem. A 117, 2479 (2013)CrossRefGoogle Scholar
  18. 18.
    A.B. Muñoz-García, L. Seijo, Phys. Rev. B 82, 184118 (2010)CrossRefGoogle Scholar
  19. 19.
    J.L. Wu, G. Gundiah, A.K. Cheetham, Chem. Phys. Lett. 441, 250 (2007)CrossRefGoogle Scholar
  20. 20.
    M. Ayvacikli, A. Canimoglu, L.E. Muresan, L. Barbu Tudoran, J. Garcia Guinea, Y. Karabulut, A. Jorge, T. Karali, N. Can, J. Alloys Compd. 666, 447 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B.P. Uberuaga, D.A. Andersson, K.J. McClellan, C.R. Stanek, Phys. Rev. B 84, 081102 (2011)CrossRefGoogle Scholar
  22. 22.
    J.M. Robertson, M.W.V. Tol, W.H. Smits, J.P.H. Heyene, Philips J. Res. 36, 15 (1981)Google Scholar
  23. 23.
    Y. Yang, B. Liu, Y. Zhang, X. Lv, L. Wei, X. Wang, Superlattices Microstruct. 90, 227 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Zhang, W. Hu, Y. Wu, H. Liu, Physica B 403, 1678 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yuguo Yang
    • 1
    • 2
  • Bing Liu
    • 1
    • 2
  • Yuanyuan Zhang
    • 1
    • 2
  • Xianshun Lv
    • 1
    • 2
  • Lei Wei
    • 1
    • 2
  • Jianhua Xu
    • 1
    • 2
  • Huadi Zhang
    • 1
    • 2
  • Xuping Wang
    • 1
    • 2
  • Cong Zhang
    • 1
    • 2
  • Jing Li
    • 1
    • 3
  1. 1.Advanced Materials InstituteQilu University of Technology (Shandong Academy of Sciences)JinanChina
  2. 2.Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Light Conversion Materials and Technology of Shandong Academy of SciencesJinanChina
  3. 3.Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory for High Strength Lightweight Metallic MaterialsJinanChina

Personalised recommendations