Advertisement

Structural, electrical and thermal studies on microwave sintered Dy and Pr co-doped ceria ceramics as electrolytes for intermediate temperature solid oxide fuel cells

  • Ch. Madhusudan
  • Kasarapu Venkataramana
  • Chittimadula Madhuri
  • C. Vishnuvardhan Reddy
Article
  • 67 Downloads

Abstract

The present study was focused on the effects of co-doping on the conductivity enhancement of CeO2-based solid ceramics for application as electrolytes in intermediate temperature solid oxide fuel cells (IT-SOFCs) and the correlation of ionic conductivity variations with micro structural alterations resulting from the addition of co-dopants. Nano-crystalline Dy and Pr co-doped ceria Ce0.8Pr0.2−xDyxO2−δ solid solutions were successfully synthesized by sol–gel auto-combustion and innovative densification by energy efficient microwave sintering (MS) at 1300 °C. The XRD results in concurrence with Raman studies ascertained the formation of cubic fluorite structure in the entire range of composition. The lattice parameters obtained by Rietveld refinement showed lattice contraction with increased dysprosium content. MS has resulted in improved densification and the relative densities of all the samples were noticed above 96% of the theoretical density. TEM images confirmed the nano-crystalline character in the as-prepared samples with the particle sizes measured around 20 nm. SEM micrographs showed spherical faceted near-uniform grains (average grain sizes around 225 nm) with distinct grain boundaries and negligible porosity. Formation of oxygen vacancies and their concentration in all the samples was assessed with the help of Raman spectroscopy. Total ionic conductivity values and activation energies were measured depending on the Dy content. The ionic conductivity of the best composition was found to be 6.8 mS cm−1 at 500 °C. Thermal expansion co-efficient of the samples was matched with that of the commonly used electrode materials. These results gave rise to the firm conclusion that the investigated co-doped ceria has the potential to be utilized as an electrolyte for IT-SOFC applications.

Notes

Acknowledgements

One of the authors, Ch. Madhusudan acknowledges the financial assistance of University Grants Commission (Lr. APKA028/001/XIIPLAN), New Delhi, India under the scheme of Faculty Development Program.

References

  1. 1.
    J.A. Kilner, M. Burriel, Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 44, 365–393 (2014)CrossRefGoogle Scholar
  2. 2.
    M.A. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power Sources 203, 4–16 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Avinash Kumar, K. Suresh Babu, A. Dasgupta, R. Ramaseshan, Enhancing the dual magnetic and optical properties of co-doped cerium oxide nanostructures. RSC Adv. 5, 103465–103473 (2015).  https://doi.org/10.1039/C5RA15336K CrossRefGoogle Scholar
  4. 4.
    J.P.P. Huijsmans, F.P.F. van Berkel, G.M. Christie, Intermediate temperature SOFC—a promise for the 21st century. J. Power Sources 71, 107–110 (1998)CrossRefGoogle Scholar
  5. 5.
    D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRefGoogle Scholar
  6. 6.
    F.S. da Silva, T.M. de Souza, Novel materials for solid oxide fuel cell technologies: a literature review. Int. J. Hydrogen Energy (2017).  https://doi.org/10.1016/j.ijhydene.2017.08.105 CrossRefGoogle Scholar
  7. 7.
    R.N. Bharathi, S. Shankar, Structural, optical and magnetic properties of Pr doped CeO2 nanoparticles synthesized by citrate-nitrate auto combustion method. J. Mater. Sci.: Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-8654-7 CrossRefGoogle Scholar
  8. 8.
    Y.-C. Wu, C.-C. Lin, The microstructures and property analysis of aliovalent cations (Sm3+, Mg2+, Ca2+, Sr2+, Ba2+) co-doped ceria-base electrolytes after an aging treatment. Int. J. Hydrogen Energy 39, 7988–8001 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Singh, K. Kumar, S. Srivastava, A. Chowdhury, Effect of rare-earth doping in CeO2 matrix: correlations with structure, catalytic and visible light photocatalytic properties. Ceram. Int. 43, 17041–17047 (2017)CrossRefGoogle Scholar
  10. 10.
    E. Swatsitang, S. Phoka, S. Hunpratub, S. Maensiri, Modification of Ce valence states by Sm/Sr co-doping of CeO2 nanoparticles for improved magneto-electrochemical properties. Mater. Des. 108, 27–33 (2016)CrossRefGoogle Scholar
  11. 11.
    M.J.D. Rushton, A. Chroneos, Impact of uniaxial strain and doping on oxygen diffusion in CeO2. Sci. Rep. 4:6068 (2014).  https://doi.org/10.1038/srep06068 CrossRefGoogle Scholar
  12. 12.
    G. Zhang, J. Xu, Z. Hou, Q. Wang, Research on micro-structure and catalysis properties of nanosized Ce1−x(Fe0.5Eu0.5)xO2−δ solid solutions. J. Rare Earths 35, 63–70 (2017)CrossRefGoogle Scholar
  13. 13.
    S.A. Acharya, V.M. Gaikwad, S.W. D’Souza, S.R. Barman, Gd/Sm dopant-modified oxidation state and defect generation in nano-ceria. Solid State Ionics 260, 21–29 (2014)CrossRefGoogle Scholar
  14. 14.
    B. Matovic, J. Pantic, J. Lukovic, S. Ilic, N. Stabkovic, M. Kokunesovski, M. Miljevic, Synthesis and characterization of (Ba, Yb) doped ceria nanopowders. Process. Appl. Ceram. 5, 69 (2011)CrossRefGoogle Scholar
  15. 15.
    D.J.M. Bevan, E. Summerville, Handbook on the Physics and Chemistry of Rare Earths, Vol 3 (1979), pp. 1–664Google Scholar
  16. 16.
    N. Jaiswal, S. Upadhyay, D. Kumar, O. Parkash, Sm3+ and Sr2+ co-doped ceria prepared by citrate-nitrate auto-combustion method. Int. J. Hydrogen Energy 39, 543–551 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Ma, K. Zhao, B.-H. Kim, Q. Li, J. Huang, Synthesis and characterizations of Ce0.85(SmxNd1−x)0.15O2−δ ceramics. J. Alloys Compd. 601, 260–266 (2014)CrossRefGoogle Scholar
  18. 18.
    P.C.C. Daza, R.A.M. Meneses, J.L. de Almeida Ferreira, J.A. Araujo, A.C.M. Rodrigues, C.R.M. da Silva, Influence of microstructural characteristics on ionic conductivity of ceria based ceramic solid electrolytes. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2017.10.166 CrossRefGoogle Scholar
  19. 19.
    A. Arabaci, V. Sariboga, M.A. Faruk Oksuzomer, Er and Gd co-doped ceria-based electrolyte materials for IT-SOFCs prepared by the cellulose-templating method. Metall. Mater. Trans. (2014).  https://doi.org/10.1007/s11661-014-2456-1 CrossRefGoogle Scholar
  20. 20.
    K. Venkataramana, C. Madhuri, Y. Suresh Reddy, G. Bhikshamaiah, C. Vishnuvardhan Reddy, Structural, electrical and thermal expansion studies of tri-doped ceria electrolyte materials for IT-SOFCs. J. Alloys Compd. 719, 97–107 (2017)CrossRefGoogle Scholar
  21. 21.
    L.B. Winck, J.L. de Almeida Ferreira, J.M.G. Martinez, J.A. Araujo, A.C.M. Rodrigues, C.R.M. da Silva, Synthesis, sintering and characterization of ceria-based solid electrolytes codoped with samaria and gadolinium using the Pechini method. Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.09.017 CrossRefGoogle Scholar
  22. 22.
    A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 3, 91–112 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Prekajski, M. Stojmenovic, A. Radojkovic, G. Brankovic, H. Oraon, R. Subasri, B. Matovic, Sintering and electrical properties of Ce1−xBixO2−δ solid solution. J. Alloys Compd. 617, 563–568 (2014)CrossRefGoogle Scholar
  24. 24.
    C.K. Ng, S. Ramesh, C.Y. Tan, A. Muchtar, M.R. Somalu, Microwave sintering of ceria-doped scandia stabilized zirconia as electrolyte for solid oxide fuel cell. Int. J. Hydrogen Energy 41, 14184–14190 (2016)CrossRefGoogle Scholar
  25. 25.
    D.-J. Kim, Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions. J. Am. Ceram. Soc. 72, 1415–1421 (1989)CrossRefGoogle Scholar
  26. 26.
    D. Hari Prasad, S.Y. Park, H.-I. Ji, H.-R. Kim, J.-W. Son, B.-K. Kim, H.-W. Lee, J.-H. Lee, Structural characterization and catalytic activity of Ce0.65Zr0.25RE0.1O2−δ nanocrystalline powders synthesized by the glycine-nitrate process. J. Phys. Chem. C 116, 3467–3476 (2012)CrossRefGoogle Scholar
  27. 27.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  28. 28.
    S.I. Ahmed, T. Mohammed, A. Bahafi, M.B. Suresh, Effect of Mg doping and sintering temperature on structural and morphological properties of samarium-doped ceria for IT-SOFC electrolyte. Appl. Nano Sci. 7, 243–252 (2017)CrossRefGoogle Scholar
  29. 29.
    S.-P. Li, J.-Q. Lu, P. Fang, M.-F. Luo, Effect of oxygen vacancies on electrical properties of Ce0.8Sm0.1Nd0.1OO2−δ electrolyte: an in situ Raman spectroscopic study. J. Power Sources 193, 93–98 (2009)CrossRefGoogle Scholar
  30. 30.
    S.-F. Wang, C.-T. Yeh, Y.-R. Wang, Y.-C. Wu, Characterization of samarium-doped ceria powders prepared by hydrothermal synthesis for use in solid state oxide fuel cells. J. Mater. Res. Technol. 2, 141–148 (2013)CrossRefGoogle Scholar
  31. 31.
    Z.-Y. Pu, J.-Q. Lu, M.-F. Luo, Y.-L. Xie, Study of oxygen vacancies in Ce0.9Pr0.1O2–d solid solution by in situ X-ray diffraction and in situ Raman spectroscopy. J. Phys. Chem. C 111, 18695–18702 (2007)CrossRefGoogle Scholar
  32. 32.
    S. Ramesh, K.C. James Raju, Preparation and characterization of Ce1−x(Gd0.5Pr0.5)xO2 electrolyte for IT-SOFCs. Int. J. Hydrogen Energy 37, 10311–10317 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Ramesh, V. Prashanth Kumar, P. Kistaiah, C. Vishnuvardhan Reddy, Preparation, characterization and thermo electrical properties of co-doped Ce0.8–xSm0.2CaxO2−δ materials. Solid State Ionics 181, 86–91 (2010)CrossRefGoogle Scholar
  34. 34.
    C.G.M. Lima, T.H. Santos, J.P.F. Grilo, R.P.S. Dutra, R.M. Nascimento, S. Rajesh, F.C. Fonseca, D.A. Macedo, Synthesis and properties of CuO-doped Ce0.9Gd0.1O2−δ electrolytes for SOFCs. Ceram. Int. (2015).  https://doi.org/10.1016/j.ceramint.2014.12.093 CrossRefGoogle Scholar
  35. 35.
    G. Dell’Agli, L. Spiridigliozzi, A. Marocco, G. Accardo, D. Frattini, Y. Kwon, S.P. Yoon, Morphological and crystalline evolution of Sm-(20 mol%)–doped ceria nanopowders prepared by a combined co-precipitation/hydrothermal synthesis for solid oxide fuel cell applications. Ceram. Int. (2017).  https://doi.org/10.1016/j.ceramint.2017.06.169 CrossRefGoogle Scholar
  36. 36.
    C. Tian, B. Ji, J. Xie, W. Bao, K. Liu, J. Cheng, Q. Yin, Preparation and characterization of Ce0.8La0.2–xYxO1.9 as electrolyte for solid oxide fuel cells. J. Rare Earths 32, 1162–1169 (2014)CrossRefGoogle Scholar
  37. 37.
    K. Venkataramana, C. Madhuri, Ch. Madhusudan, Y. Suresh Reddy, G. Bhikshamaiah, C. Vishnuvardhan Reddy, Investigation on La3+ and Dy3+ co-doped ceria ceramics with an optimized average atomic number of dopants for electrolytes in IT-SOFCs. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.01.020 CrossRefGoogle Scholar
  38. 38.
    G.B. Balazs, R.S. Glass, AC impedance studies of rare earth oxide doped ceria. Solid State Ionics 76, 155–162 (1995)CrossRefGoogle Scholar
  39. 39.
    Z. Zhan, T.-L. Wen, H. Tu, Z.-Y. Lu, AC impedance investigation of samarium-doped ceria. Electrochem. Soc. 148, A427–A432 (2001)CrossRefGoogle Scholar
  40. 40.
    A. Wain-Martin, A. Moran-Ruiz, K. Vidal, A. Larranga, M.A. Laguna-Bercero, Scalable synthetic method for SOFC compounds. Solid State Ionics 313, 52–57 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Hayashi, M. Kanoh, C.J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ionics 132, 227–233 (2000)CrossRefGoogle Scholar
  42. 42.
    K. Venkataramana, C. Madhuri, J. Shanker, Ch. Madhusudan, C. Vishnuvardhan Reddy, Microwave-sintered Pr3+, Sm3+, and Gd3+ triple-doped ceria electrolyte material for IT-SOFC applications. Ionics (2018).  https://doi.org/10.1007/s11581-017-2427-9 CrossRefGoogle Scholar
  43. 43.
    T. Hisashige, Y. Yamamura, T. Tsuji, Thermal expansion and Debye temperature of rare earth-doped ceria. J. Alloys Compd. 408–412, 1153–1156 (2006)CrossRefGoogle Scholar
  44. 44.
    X. Kong, G. Liu, Z. Yi, X. Ding, NdBaCu2O5+δ and NdBa0.5Sr0.5Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. Int. J. Hydrogen Energy 40, 16477–16483 (2015)CrossRefGoogle Scholar
  45. 45.
    K. Venkataramana, K. Ravindranath, C. Madhuri, Ch. Madhusudan, N. Pavan Kumar, C. Vishnuvardhan Reddy, Low temperature microwave sintering of yttrium and samarium co-doped ceria solid electrolytes for IT-SOFCs. Ionics (2017).  https://doi.org/10.1007/s11581-017-2293-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ch. Madhusudan
    • 1
  • Kasarapu Venkataramana
    • 1
  • Chittimadula Madhuri
    • 1
  • C. Vishnuvardhan Reddy
    • 1
  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia

Personalised recommendations