Advertisement

Crystal structure, sintering behavior and microwave dielectric properties of CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution ceramics

  • Sen Peng
  • Chenglin Zhao
  • Guohua Huang
  • Shaojie Wang
  • Jianming Xu
  • Xingliang Li
  • Shengquan Yu
Article
  • 76 Downloads

Abstract

A novel CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution with garnet structure was synthesized by solid-state reaction technique. Ca2+ and Ti4+ substituted for Y3+ and Al3+, respectively. Ca2+/Ti4+ doping reduced the sintering temperature of CaxY3−xAl5−xTixO12 ceramics to 1450 °C, and it also improved corresponding densification process. Meanwhile, the doping strongly influenced microwave dielectric properties. For the samples sintered at 1550 °C for 3 h, the dielectric constant (εr) increased from 7.2 to 34.7 by increasing Ca2+/Ti4+ content, and at the same time the quality factor (Q × f) values increased from 12,000 to 45,200 GHz and then slightly declined to 41,000 GHz. The temperature coefficient of resonant frequency (τf) values of these samples increased monotonically from − 40 to + 31 ppm/°C by increasing Ca2+/Ti4+ content. Therefore, CaxY3−xAl5−xTixO12 solid solution ceramics with x = 1.5 sintered at 1550 °C for 3 h showed optimum microwave dielectric properties: εr = 32.6, Q × f = 45,200 GHz and τf = + 7 ppm/°C. CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution ceramics with garnet structure were new promising aluminate ceramics for microwave dielectric application.

Notes

Acknowledgements

This work was supported by the national natural science foundation of China (Grant Nos. 61672356, 51702301), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 08C786), the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Key Laboratory of Science and Technology on High Energy Laser, CAEP.

References

  1. 1.
    P. Wang, Y.R. Wang, J.X. Bi et al., J. Alloys Compd. 721, 143–148 (2017)CrossRefGoogle Scholar
  2. 2.
    B. Tang, S. Yu, H. Chen et al., J. Alloys Compd. 551, 463–467 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Takahashi, H. Ogawa, A. Kan, J. Eur. Ceram. Soc. 38, 593–598 (2018)CrossRefGoogle Scholar
  4. 4.
    B. Tang, S. Yu, H. Chen et al., J. Mater. Sci. Mater. Electron. 24, 1475–1479 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Yu, S. Zhang, B. Tang et al., Ceram. Int. 38, 613–618 (2012)CrossRefGoogle Scholar
  6. 6.
    K.P. Surendran, N. Santha, P. Mohanan, Eur. Phys. J. B 41, 301–306 (2004)CrossRefGoogle Scholar
  7. 7.
    C.W. Zheng, S.Y. Wu, X.M. Chen et al., J. Am. Ceram. Soc. 90, 1483–1486 (2007)CrossRefGoogle Scholar
  8. 8.
    J.M. Wu, W.Z. Lu, W. Lei et al., Mater. Res. Bull. 46, 1485–1489 (2011)CrossRefGoogle Scholar
  9. 9.
    M.H. Kim, C.S. Woo, S. Nahm et al., Mater. Res. Bull. 37, 605–615 (2002)CrossRefGoogle Scholar
  10. 10.
    C. Huang, X. Lu, M. Lu et al., Ceram. Int. 43, 10624–10627 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Ikesue, Y.L. Aung, J. Am. Ceram. Soc. 100, 26–30 (2017)CrossRefGoogle Scholar
  12. 12.
    I. Kagomiya, Y. Matsuda, K. Kakimoto et al., Ferroelectrics 387, 1–6 (2009)CrossRefGoogle Scholar
  13. 13.
    W. Jin, W. Yin, S. Yu et al., Mater. Lett. 173, 47–49 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, X. Wang, P. Fu et al., Ceram. Int. 41, 7783–7789 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Zhang, G. Fan, W. Lu et al., J. Eur. Ceram. Soc. 36, 2767–2772 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Zhou, Z. Yue, L. Li, Ferroelectrics 407, 69–74 (2010)CrossRefGoogle Scholar
  17. 17.
    B.W. Hakki, P.D. Coleman, IRE Trans Microw. Theory Tech. 8, 402–410 (1960)CrossRefGoogle Scholar
  18. 18.
    S. Kostić, Z. Lazarević, V. Radojević et al., Mater. Res. Bull. 63, 80–87 (2015)CrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar
  20. 20.
    Y.J. Lin, S.F. Wang, B.C. Lai et al., J. Eur. Ceram. Soc. 37, 2825–2831 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sen Peng
    • 1
  • Chenglin Zhao
    • 1
  • Guohua Huang
    • 1
  • Shaojie Wang
    • 1
  • Jianming Xu
    • 1
  • Xingliang Li
    • 1
  • Shengquan Yu
    • 2
  1. 1.Provincial Key Laboratory of Informational Service for Rural Area of Southwestern HunanShaoyang UniversityShaoyangChina
  2. 2.Institute of Chemical MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations