Advertisement

High-temperature dielectrics based on (1 − x)[0.94Bi0.5Na0.5TiO3–0.06BaTiO3–0.03AgNbO3]–xK0.5Na0.5NbO3

  • Pengrong Ren
  • Jiaojiao He
  • Xin Wang
  • Yuhui Wan
  • Fuxue Yan
  • Gaoyang Zhao
Article
  • 28 Downloads

Abstract

High temperature dielectrics based on (1 − x)[0.94Bi0.5Na0.5TiO3–0.06BaTiO3–0.03AgNbO3]–xK0.5Na0.5NbO3 (BNTBTAN–100xKNN, x = 0.01, 0.02, 0.03, 0.04) are prepared. The effects of K0.5Na0.5NbO3 contents on temperature stability of dielectric properties of BNTBTAN–100xKNN ceramics in the temperature range between 25 and 500 °C are studied. By incorporation of certain amount of AgNbO3, the required K0.5Na0.5NbO3 contents to disrupt the correlation among polar nanoregions in Bi0.5Na0.5TiO3 is reduced, thus this system not only has stable permittivity, but more importantly, behaves high insulting behavior, leading to the lower dielectric loss at high temperature. In particular, BNTBTAN–4KNN exhibits high dielectric permittivity (~ 2452), low dielectric loss (≤ 0.02) in the temperature range between 126 and 319 °C and small variation (Δε′/ε′150 °C ≤ 15%) in dielectric permittivity from 51 to 371 °C. Therefore, our work provides a new promising candidate of materials for capacitors which can be operated at high temperature.

Notes

Acknowledgements

This work was financially supported by Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province, Scientific and Technological Project of Yulin City (2016-16-6).

References

  1. 1.
    J. Watson, G. Castro, A review of high-temperature electronics technology and applications. J. Mater. Sci.: Mater. Electron. 26, 9226–9235 (2015)Google Scholar
  2. 2.
    M.J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26, 44–50 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Acosta, J.D. Zang, W. Jo, J. Rödel, High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 32, 4327–4334 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Muhammad, Y. Iqbal, I.M. Reaney, C. Randall, BaTiO3-Bi (Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 99, 2089–2095 (2016)CrossRefGoogle Scholar
  5. 5.
    B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, J.F. Scott, X.R. Zeng, H.T. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015)CrossRefGoogle Scholar
  6. 6.
    T.Y. Li, X.J. Lou, X.Q. Ke, S.D. Cheng, S.B. Mi, X.J. Wang, J. Shi, X. Liu, G.Z. Dong, H.Q. Fan, Y.Z. Wang, X.L. Tan, Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater. 128, 337–344 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Shi, H.Q. Fan, X. Liu, Q. Li, Giant strain response and structure evolution in (Bi0.5Na0.5)0.945-x(Bi0.2Sr0.70.1)xBa0.055TiO3 ceramics. J. Eur. Ceram. Soc. 34, 3675–3683 (2014)CrossRefGoogle Scholar
  8. 8.
    C.W. Cui, Y.P. Pu, Z.Y. Gao, J. Wan, Y.S. Guo, C.Y. Hui, Y.R. Wang, Y.F. Cui, Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications. J. Alloys Compd. 711, 319–326 (2017)CrossRefGoogle Scholar
  9. 9.
    S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007)CrossRefGoogle Scholar
  10. 10.
    R. Garg, B. Rao, A. Senyshyn, P. Krishna, R. Ranjan, Lead-free piezoelectric system (Bi1/2Na1/2)TiO3-BaTiO3: equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact. Phys. Rev. B 88, 2358–2367 (2013)CrossRefGoogle Scholar
  11. 11.
    W.F. Bai, D.Q. Chen, P. Zheng, B. Shen, J.W. Zhai, Z.G. Ji, Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. Dalton Trans. 45, 8573–8586 (2016)CrossRefGoogle Scholar
  12. 12.
    J.D. Zang, W. Jo, H.B. Zhang, J. Rödel, Bi1/2Na1/2TiO3–BaTiO3 based thick-film capacitors for high-temperature applications. J. Eur. Ceram. Soc. 34, 37–43 (2014)CrossRefGoogle Scholar
  13. 13.
    W.X. Jia, Y.D. Hou, M.P. Zheng, M.K. Zhu, High-temperature dielectrics based on (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xNaNbO3 system. J. Alloys Compd. 724, 306–315 (2017)CrossRefGoogle Scholar
  14. 14.
    J.D. Zang, M. Li, D.C. Sinclair, W. Jo, J. Rödel, Impedance spectroscopy of (Bi1/2Na1/2)TiO3–BaTiO3 ceramics modified with (K0.5Na0.5)NbO3. J. Am. Ceram. Soc. 97, 1523–1529 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Sciau, A. Kania, B. Dkhil, E. Suard, A. Ratuszna, Structural investigation of AgNbO3 phases using X-ray and neutron diffraction. J. Phys.: Condens. Matter 16, 2795–2810 (2004)Google Scholar
  16. 16.
    Z.C. Liu, P.R. Ren, C.B. Long, X. Wang, Y.H. Wan, G.Y. Zhao, Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017)CrossRefGoogle Scholar
  17. 17.
    J. East, D.C. Sinclair, Characterization of (Bi1/2Na1/2)TiO3 using electric modulus spectroscopy. J. Mater. Sci. Lett. 16, 422–425 (1997)CrossRefGoogle Scholar
  18. 18.
    Y.M. Li, W. Chen, J. Zhou, Q. Xu, X.Y. Gu, R.H. Liao, Impedance spectroscopy and dielectric properties of Na0.5Bi0.5TiO3–NaNbO3 ceramics. Physica B 365, 76–81 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Cernea, A. Galca, M. Cioangher, C. Dragoi, G. Ioncea, Piezoelectric BNT–BT0.11 thin films processed by sol–gel technique. J. Mater. Sci. 46, 5621–5627 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Cernea, L. Trupina, C. Dragoi, A.-C. Galca, L. Trinca, Structural, optical, and electric properties of BNT–BT0.08 thin films processed by sol-gel technique. J. Mater. Sci. 47, 6966–6971 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Pengrong Ren
    • 1
  • Jiaojiao He
    • 1
  • Xin Wang
    • 2
  • Yuhui Wan
    • 1
  • Fuxue Yan
    • 1
  • Gaoyang Zhao
    • 1
  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anChina
  2. 2.Shaanxi Province Thin Film Technology and Optical Test Open Key LaboratoryXi’an Technological UniversityXi’anChina

Personalised recommendations