Advertisement

Low temperature sintering and microwave dielectric properties of Li2ZnTi3O8–TiO2 ceramics doped with BaO–B2O3–ZnO glass

  • Guojin Shu
  • Qiao Zhang
  • Fan Yang
  • Fancheng Meng
  • Huixing Lin
Article

Abstract

A low temperature co-fired ceramic (LTCC) material of Li2ZnTi3O8–TiO2 (L2ZT3–TiO2) doped with BaO–B2O3–ZnO (BBZ) glass were prepared by conventional solid-state method. The effects of BBZ glass on the phase composition, microstructure, and microwave dielectric properties were investigated. The results indicated that BBZ glass as a sintering aid could effectively reduce the sintering temperature of L2ZT3–TiO2 ceramic below 950 °C. The XRD patterns indicated that L2ZT3–TiO2 ceramic consisted of Li2ZnTi3O8 and TiO2 phases. BBZ glass addition did not change the phase composition. In addition, the SEM demonstrated that BBZ glass could significantly improve the grain growth and densification. The sintering mechanism was analyzed through the wetting behavior and the activation energy (Ea). When added 2.5 wt% BBZ glass, the average activation energy reduced from 492.38 ± 139.03 to 370.69 ± 20.98 kJ/mol, which indicated that the BBZ glass not only effective lowered the sintering temperature but also promoted the sintering process. The L2ZT3–TiO2 ceramic with 2.5 wt% BBZ sintered at 925 °C for 4 h had excellent microwave dielectric properties of εr = 26.3, Q × f = 36,554 GHz and τf = − 4.16 ppm/°C. In addition, the good chemical compatibility of this material with Ag electrode could make it as a potential candidate for LTCC technology.

Notes

Acknowledgements

This work was financially supported by the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (Grant No. KLIFMD-2015-06).

References

  1. 1.
    I. Yoshihiko, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, Japan, 2005)Google Scholar
  2. 2.
    Y. Wu, D. Zhou, J. Guo, L.X. Pang, H. Wang, Mater. Lett. 65, 2680–2682 (2011)CrossRefGoogle Scholar
  3. 3.
    M.T. Sebastian, H. Wang, H. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151–170 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, J. Mater. Sci. 25, 355–360 (2014)Google Scholar
  5. 5.
    J. Liang, W.Z. Lu, J.M. Wu, Mater. Sci. Eng. B. 176, 99–102 (2011)CrossRefGoogle Scholar
  6. 6.
    M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)CrossRefGoogle Scholar
  7. 7.
    H.S. Ren, S.H. Jiang, M.Z. Dang, T.Y. Xie, H.X. Lin, J. Alloys Compd. 740, 1188–1196 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Fang, Y. Tang, D.J. Chu, J. Mater. Sci.: Mater. Electron. 23, 478–483 (2012)Google Scholar
  9. 9.
    F. Liang, D.J. Chu, C. Li, J. Am. Ceram. Soc. 94, 524–528 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Duan, E. Li, H. Chen, Ceram. Int. 42, 7943–7949 (2016)CrossRefGoogle Scholar
  11. 11.
    G.L. Wu, H.J. Wu, K.K. Wang, RSC Adv. 6, 58069–58076 (2016)CrossRefGoogle Scholar
  12. 12.
    G.L. Wu, Y.H. Cheng, Z.H. Yang, Chem. Eng. J. 333, 519–528 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Shi, J.W. Zhu, X. Shen, RSC Adv. 8, 4072–4077 (2018)CrossRefGoogle Scholar
  14. 14.
    A.L. Feng, G.L. Wu, Y.Q. Wang, J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)CrossRefGoogle Scholar
  15. 15.
    H.L. Lv, Y.H. Guo, G.L. Wu, ACS Appl. Mater. Interfaces 9, 5660–5668 (2017)CrossRefGoogle Scholar
  16. 16.
    A.L. Feng, Z.R. Jia, Q. Yu, Nano 13, 1850037 (2018)CrossRefGoogle Scholar
  17. 17.
    D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Am. Ceram. Soc. 95, 126–132 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Subodh, M.T. Sebastian, J. Am. Ceram. Soc. 90, 2266–2268 (2007)CrossRefGoogle Scholar
  19. 19.
    X. Jiang, L. Fang, H. Xiang, Ceram. Int. 41, 13878–13882 (2015)CrossRefGoogle Scholar
  20. 20.
    D. Zhou, H. Wang, L.X. Pang, J. Am. Ceram. Soc. 92, 2242–2246 (2010)CrossRefGoogle Scholar
  21. 21.
    G. Schileo, A. Dias, R.L. Moreira, T.J. Jackson, J. Am. Ceram. Soc. 97, 1096–1102 (2014)CrossRefGoogle Scholar
  22. 22.
    H.F. Zhou, X. Chen, L. Fang, J. Am. Ceram. Soc. 93, 3976–3979 (2010)CrossRefGoogle Scholar
  23. 23.
    V.S. Hernandez, L.M.T. Martinez, G.C. Mather, J. Mater. Chem. 6, 1533–1536 (1996)CrossRefGoogle Scholar
  24. 24.
    S. George, M.T. Sebastian, J. Eur. Ceram. Soc. 30, 2585–2592 (2010)CrossRefGoogle Scholar
  25. 25.
    L. Fang, Q. Liu, C.X. Su, Mater. Lett. 81, 34–36 (2012)CrossRefGoogle Scholar
  26. 26.
    H.K. Li, W. Lu, W. Lei, Mater. Lett. 71, 148–150 (2012)CrossRefGoogle Scholar
  27. 27.
    M.K. Zitani, T. Ebadzadeh, S. Banijamali, Ceram. Int. 44, 4016–4026 (2017)CrossRefGoogle Scholar
  28. 28.
    H.S. Ren, L. Hao, H.Y. Peng, J. Eur. Ceram. Soc. 38, 3498–3504 (2018)CrossRefGoogle Scholar
  29. 29.
    H.S. Ren, T.Y. Xie, M.Z. Dang, Ceram. Int. 43, 12863–12869 (2017)CrossRefGoogle Scholar
  30. 30.
    L. Hao, G.J. Shu, F.C. Meng, H.X. Lin, Ceram. Int. 44, 13139–13144 (2018)CrossRefGoogle Scholar
  31. 31.
    C.F. Shih, W.M. Li, M.M. Lin, J. Alloys Compd. 485, 408–412 (2009)CrossRefGoogle Scholar
  32. 32.
    Q.L. Zhang, H. Yang, J.L. Zou, J. Mater. Sci.: Mater. Electron. 20, 181–185 (2009)Google Scholar
  33. 33.
    Z.Z. Weng, R. Guan, Z. Xiong, J. Alloys Compd. 695, 3517–3521 (2017)CrossRefGoogle Scholar
  34. 34.
    Z.Z. Weng, H. Aminirastabi, Z.X. Xiong, J. Alloys Compd. 725, 1063–1068 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Valant, D. Suvorov, R.C. Pullar, J. Eur. Ceram. Soc. 26, 2777–2783 (2006)CrossRefGoogle Scholar
  36. 36.
    L. Fang, C.X. Su, H.F. Zhou, J. Am. Ceram. Soc. 96, 688–690 (2013)CrossRefGoogle Scholar
  37. 37.
    C.F. Tseng, P.J. Tseng, C.M. Chang, J. Am. Ceram. Soc. 97, 1918–1922 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing University of TechnologyChongqingPeople’s Republic of China
  2. 2.Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations