Advertisement

Improvement of thermal stability of antimony film by cerium addition for phase change memory application

  • Jianhao Zhang
  • Hua Zou
  • Yifeng Hu
  • Xiaoqin Zhu
  • Yuemei Sun
  • Zhitang Song
Article
  • 44 Downloads

Abstract

Compared with pure Antimony (Sb) materials, Cerium (Ce) doped Sb alloys is proved to be a promising candidate with better thermal stability for phase change memory application. In this paper, the Ce doped Sb films were synthesized by magnetron sputtering. The crystallization temperature (Tc), activation energy (Ea) and the temperature for 10 years data retention (Tten) all increased significantly by increasing Ce dopants, meaning a much better thermal stability. These results may ascribe to disturbing crystallization process from the existence of Ce–Sb bond.

Notes

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 11774438), Natural Science Foundation of Jiangsu Province (No. BK20151172), Changzhou Sci & Tech Program (Nos. CM20173002, CJ20160028), and sponsored by Qing Lan Project.

References

  1. 1.
    X. Zhou, J.K. Behera, S. Lv, L. Wu, Z. Song, R.E. Simpson, Avalanche atomic switching in strain engineered Sb2Te3–GeTe interfacial phase-change memory cells. Nano Fut. 1, 025003 (2017)CrossRefGoogle Scholar
  2. 2.
    T.H. Lee, D. Loke, S.R. Elliott, Microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials. Adv. Mater. 27, 5477–5483 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Schumacher, H. Weber, P. Jovari, Y. Tsuchiya, T.G. Youngs, I. Kaban, R. Mazzarello, Structural, electronic and kinetic properties of the phase-change material Ge2Sb2Te5 in the liquid state. Sci. Rep. 6, 27434 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Lett. 9, 47 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Nakamura, I. Rungger, S. Sanvito, N. Inoue, J. Tominaga, Y. Asai, Resistive switching mechanism of GeTe-Sb2Te3 interfacial phase change memory and topological properties of embedded two-dimensional states. Nanoscale 9, 9386–9395 (2017)CrossRefGoogle Scholar
  6. 6.
    R. Liu, Z. He, J. Zhai, S. Song, Z. Song, X. Zhou, Ultra-high speed and low-power superlattice-like Sn18Sb82–SnSe2 thin films for phase change memory applications. Mater. Lett. 163, 20–23 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Zheng, Y. Cheng, R. Huang, R. Qi, F. Rao, K. Ding, W. Yin, S. Song, W. Liu, Z. Song, S. Feng, Surface energy driven cubic-to-hexagonal grain growth of Ge2Sb2Te5 thin film. Sci. Rep. 7, 5915 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Hu, H. Zou, J. Zhang, J. Xue, Y. Sui, W. Wu, L. Yuan, X. Zhu, S. Song, Z. Song, Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application. Appl. Phys. Lett. 107, 263105 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Wang, G. Wang, Y. Chen, X. Shen, Y. Lv, Q. Nie, Advantages of Mo4.9(Sb2Te)95.1 film with improved crystallization properties for phase change memory. Mater. Lett. 161, 240–243 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Rao, Z. Song, K. Ren, X. Li, L. Wu, W. Xi, B. Liu, Sn12Sb88 material for phase change memory. Appl. Phys. Lett. 95, 032105 (2009)CrossRefGoogle Scholar
  11. 11.
    G. Eising, T. Van Damme, B.J. Kooi, Unraveling crystal growth in GeSb phase-change films in between the glass-transition and melting temperatures. Cryst. Growth Des. 14, 3392–3397 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, H. Zou, L. Yuan, J. Xue, Y. Sui, W. Wu, J. Zhang, X. Zhu, S. Song, Z. Song, Improved phase change behavior of Sb2Se material by Si addition for phase change memory. Scr. Mater. 115, 19–23 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Putero, M.-V. Coulet, C. Muller, C. Baehtz, S. Raoux, H.-Y. Cheng, Ge-doped GaSb thin films with zero mass density change upon crystallization for applications in phase change memories. Appl. Phys. Lett. 108, 101909 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Lu, S. Song, Z. Song, B. Liu, Ga14Sb86 film for ultralong data retention phase-change memory. J. Appl. Phys. 109, 064503 (2011)CrossRefGoogle Scholar
  15. 15.
    X. Yu, Y. Zhao, C. Li, C. Hu, L. Ma, S. Fan, Y. Zhao, N. Min, S. Tao, Y. Wang, Improved multi-level data storage properties of germanium-antimony-tellurium films by nitrogen doping. Scr. Mater. 141, 120–124 (2017)CrossRefGoogle Scholar
  16. 16.
    Z. Li, Y. Hu, T. Wen, J. Zhai, T. Lai, Femtosecond laser-induced crystallization of amorphous N-doped Ge8Sb92 films and in situ characterization by coherent phonon spectroscopy. J. Appl. Phys. 117, 135703 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Zhu, Y. Hu, H. Zou, Y. Sui, J. Xue, D. Shen, J. Zhang, S. Song, Z. Song, S. Sun, Influence of N-doping on the thermal stability and switching speed of Zn15Sb85 phase change material. J. Mater. Sci.: Mater. Electron. 26, 1212–1216 (2014)Google Scholar
  18. 18.
    Z. Li, C. Si, J. Zhou, H. Xu, Z. Sun, Yttrium-doped Sb2Te3: a promising material for phase-change memory. ACS Appl. Mater. Interfaces 8, 26126–26134 (2016)CrossRefGoogle Scholar
  19. 19.
    J.H. Park, S.W. Kim, J.H. Kim, D.H. Ko, Z. Wu, D. Ahn, D.H. Ahn, J.M. Lee, S.B. Kang, S.Y. Choi, Enhancement of a cyclic endurance of phase change memory by application of a high-density C15(Ge21Sb36Te43) film. AIP Adv. 6, 025013 (2016)CrossRefGoogle Scholar
  20. 20.
    H.S. Kim, Y.T. Kim, H.S. Hwang, M.Y. Sung, The effect of carbon-doped In3Sb1Te2 ternary alloys for multibit (MLC) phase-change memory. Phys. Status Solidi (RRL)—Rapid Res. Lett. 8, 243–247 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Sun, Y. Hu, X. Zhu, H. Zou, Y. Sui, J. Xue, L. Yuan, J. Zhang, L. Zheng, D. Zhang, Z. Song, O-doped Sb70Se30 phase-change materials for high thermal stability and fast speed. J. Electron. Mater. 46, 6811–6816 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Sun, X. Wang, J. Du, N. Chen, H. Yu, Q. Wu, X. Meng, Amorphous structure and bonding chemistry of aluminium antimonide (AlSb) alloy for phase-change memory device. Chem. Res. Chin. Univ. 32, 76–81 (2016)CrossRefGoogle Scholar
  23. 23.
    W. Wu, S. Chen, J. Zhai, Study on the physical properties and structure of titanium antimony thin films for phase change memory application. J. Mater. Sci. 52, 11598–11607 (2017)CrossRefGoogle Scholar
  24. 24.
    T. Guo, S. Song, L. Li, L. Shen, B. Wang, B. Liu, Z. Song, M. Qi, S. Feng, Investigation of SiC doped Sb3Te alloy for high-speed and high-thermal stability phase change random access memory applications. Mater. Lett. 169, 203–206 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Zheng, Y. Cheng, M. Zhu, X. Ji, Q. Wang, S. Song, Z. Song, W. Liu, S. Feng, A candidate Zr-doped Sb2Te alloy for phase change memory application. Appl. Phys. Lett. 108, 052107 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Zou, Y. Hu, X. Zhu, Y. Sun, L. Zheng, Y. Sui, S. Wu, Z. Song, Improvement in reliability and power consumption based on Ge10Sb90 films through erbium doping. J. Mater. Sci. 52, 5216–5222 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Zou, X. Zhu, Y. Hu, Y. Sui, W. Wu, J. Xue, L. Zheng, Z. Song, Improvement of the thermal stability of Sb thin film through erbium doping. CrystEngComm 18, 6365–6369 (2016)CrossRefGoogle Scholar
  28. 28.
    H. Zou, X. Zhu, Y. Hu, Y. Sui, Y. Sun, J. Zhang, L. Zheng, Z. Song, Simultaneous thermal stability and phase change speed improvement of Sn15Sb85 thin film through erbium doping. J. Appl. Phys. 120, 245303 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Hu, X. Zhu, H. Zou, J. Zhang, L. Yuan, J. Xue, Y. Sui, W. Wu, S. Song, Z. Song, Improved thermal stability of N-doped Sb materials for high-speed phase change memory application. Appl. Phys. Lett. 108, 223103 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Fu, X. Xiao, A. Wang, Reduced graphene oxide coupled with g-C3N4 nanodots as 2D/0D nanocomposites for enhanced photocatalytic activity. J. Phys. Chem. Solids 122, 104–108 (2018)CrossRefGoogle Scholar
  31. 31.
    Y.G. Lu, S.N. Song, Z.T. Song, F. Rao, L.C. Wu, M. Zhu, B. Liu, D.N. Yao, Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications. Appl. Phys. Lett. 100, 193114 (2012)CrossRefGoogle Scholar
  32. 32.
    Y. Hu, X. Zhu, H. Zou, Y. Lu, J. Xue, Y. Sui, W. Wu, L. Yuan, S. Song, Z. Song, Alx(Sn2Se3)1–x phase change films for high-temperature data retention and fast transition speed application. J. Mater. Sci.: Mater. Electron. 26, 7757–7762 (2015)Google Scholar
  33. 33.
    Z. He, P. Wu, R. Liu, J. Zhai, T. Lai, S. Song, Z. Song, Superlattice-like SnSb4/Ge thin films for ultra-high speed phase change memory applications. CrystEngComm 18, 1230–1234 (2016)CrossRefGoogle Scholar
  34. 34.
    S.Y. Lee, H.K. Kim, J.H. Kim, J.S. Roh, D.J. Choi, Phase transition characteristics and electrical properties of nitrogen-doped GeSb thin films for PRAM applications. J. Mater. Sci. 44, 4354–4359 (2009)CrossRefGoogle Scholar
  35. 35.
    T. Nakamura, T. Suemasu, K. Takakura, F. Hasegawa, A. Wakahara, M. Imai, Investigation of the energy band structure of orthorhombic BaSi2 by optical and electrical measurements and theoretical calculations. Appl. Phys. Lett. 81, 1032–1034 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jianhao Zhang
    • 1
  • Hua Zou
    • 1
  • Yifeng Hu
    • 1
  • Xiaoqin Zhu
    • 1
  • Yuemei Sun
    • 1
  • Zhitang Song
    • 2
  1. 1.School of Mathematics and PhysicsJiangsu University of TechnologyChangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information TechnologyChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations