Fabrication of Ag-modified porous ZnMgO nanorods with enhanced photocatalytic performance

  • Xiaoyan Deng
  • Qiang Zhang
  • Lin Wang
  • Jing Han
  • Yijiang Wu
  • Zhiyong Sun
  • Weibing Li
  • Xiangbo Li
  • Likun Xu
  • Chang FengEmail author


A series of Ag-modified porous ZnMgO nanorods (Ag/ZnMgO NRs) photocatalysts were prepared using a solvothermal method followed by a calcination treatment. The ZnMgO NRs showed a porous rod-like structure. Ag nanoparticles (NPs) were successfully loaded on the ZnMgO NRs to form a heterostructure. The rod-like structure of ZnMgO NRs was not affected after the modification with Ag NPs. The photocatalytic degradation performance under white light irradiation showed that 3% of Ag-modified porous ZnMgO NRs presented the highest photocatalytic performance, which can achieve the completely degradation of Rhodamine B and norfloxacin in only 20 min and 10 min, respectively. The improved photocatalytic performance of Ag/ZnMgO NRs is attributed to the key role of Ag NPs, which can effectively reduce the recombination of photogenerated electrons and holes and accelerate the transfer of photogenerated charge carriers, thus promoting the photocatalytic reaction process.



This work was financially supported by the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) (KF160413), and the National Natural Science Foundation of China (21301161, 41376126).


  1. 1.
    Y.K. Zhu, J. Ren, X.F. Yang, G.J. Chang, Y.Y. Bu, G.D. Wei, W. Han, D.J. Yang, Interface engineering of 3D BiVO4/Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation. J. Mater. Chem. A 5(20), 9952–9959 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, D.W. Jing, X.L. She, H.W. Liu, D.J. Yang, Y. Lu, J. Li, Z.F. Zheng, L.J. Guo, Heterojunctions in g-C3N4/TiO2(B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity. J. Mater. Chem. A 2(7), 2071–2078 (2014)CrossRefGoogle Scholar
  3. 3.
    W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, A.R. Mohomed, Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 7(3), 690–719 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Feng, Z.Y. Chen, J. Hou, J.R. Li, X.B. Li, L.K. Xu, M.X. Sun, R.C. Zeng, Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem. Eng. J. 345, 404–413 (2018)CrossRefGoogle Scholar
  5. 5.
    D.J. Yang, J. Zhao, H.W. Liu, Z.F. Zheng, M.O. Adebojo, H.X. Wang, X.T. Liu, H.J. Zhang, J.C. Zhao, J. Bell, H.Y. Zhu, Enhancing photoactivity of TiO2(B)/anatase core-shell nanofibers by selectively doping cerium ions into the TiO2(B) core. Chemistry (Weinheim an der Bergstrasse. Germany) 19(16), 5113–5119 (2013)Google Scholar
  6. 6.
    N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram. Int. 43(17), 14552–14571 (2017)CrossRefGoogle Scholar
  7. 7.
    W.B. Li, C. Feng, S.Y. Dai, J.G. Yue, F.X. Hua, H. Hou, Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl. Catal. B 168, 465–471 (2015)CrossRefGoogle Scholar
  8. 8.
    C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018)CrossRefGoogle Scholar
  9. 9.
    C. Feng, Z.Y. Chen, W.B. Li, J. Zhou, Y.Q. Sui, L.K. Xu, M.X. Sun, Effectively enhanced photocatalytic degradation performance of the Ag-modified porous ZnO nanorod photocatalyst. J. Mater. Sci.: Mater. Electron. 29(11), 9301–9311 (2018)Google Scholar
  10. 10.
    D.J. Yang, H.W. Liu, Z.F. Zheng, Y. Yuan, J.C. Zhao, E.R. Waclawik, X.B. Ke, H.Y. Zhu, An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 131(49), 17885–17893 (2009)CrossRefGoogle Scholar
  11. 11.
    P.V.L. Reddy, B. Kavitha, P.A.K. Reddy, K.H. Kim, TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environ. Res. 154, 296–303 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Yu, J. Zhang, T. Peng, New insight into the enhanced photocatalytic activity of N-, C-and S-doped ZnO photocatalysts. Appl. Catal. B 181, 220–227 (2016)CrossRefGoogle Scholar
  13. 13.
    X.F. Wang, H. Lu, W.W. Liu, M. Guo, M. Zhang, Electrodeposition of flexible stainless steel mesh supported ZnO nanorod arrays with enhanced photocatalytic performance. Ceram. Int. 43(8), 6460–6466 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Bu, J. Ren, H.W. Zhang, D.J. Yang, Z.Y. Chen, J.P. Ao, Photogenerated-carrier separation along edge dislocation of WO3 single-crystal nanoflower photoanode. J. Mater. Chem. A 6, 8604–8611 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Kwiatkowski, R. Chassagnon, O. Heintz, N. Geoffroy, M. Skompska, Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism. Appl. Catal. B 204, 200–208 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Y.Z. Zheng, S.Q. Lu, X. Tao, Y.K. Che, J.F. Chen, Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl. Mater. Interfaces 7(11), 6093–6101 (2015)CrossRefGoogle Scholar
  18. 18.
    H.W. Tian, X.Y. Zhang, Y.Y. Bu, Sulfur- and carbon-codoped carbon nitride for photocatalytic hydrogen evolution performance improvement. ACS Sustain. Chem. Energy 6(6), 7346–7354 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub, A.D. Qmrani, Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B. Ceram. Int. 42(8), 10259–10265 (2016)CrossRefGoogle Scholar
  21. 21.
    X.L. Ma, H. Li, T.Y. Liu, S.S. Du, Q.P. Qiang, Y.H. Wang, S. Yin, T. Sato, Comparison of photocatalytic reaction-induced selective corrosion with photocorrosion: Impact on morphology and stability of Ag-ZnO. Appl. Catal. B 201, 348–358 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.Y. Bu, Z.Y. Chen, Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array. J. Power Sources 272, 647–653 (2014)CrossRefGoogle Scholar
  23. 23.
    C. Han, Z. Chen, N. Zhang, J.C. Colmenares, Y.J. Xu, Hierarchically CdS Decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv. Func. Mater. 25(2), 221–229 (2015)CrossRefGoogle Scholar
  24. 24.
    R.L. Wang, T. Xie, T. Zhang, T.F. Pu, Y.Y. Bu, J.P. Ao, Fabrication of FTO–BiVO4–W–WO3 photoanode for improving photoelectrochemical performance: based on the Z-scheme electron transfer mechanism. J. Mater. Chem. A 6, 12956–12961 (2018)CrossRefGoogle Scholar
  25. 25.
    H.C. Yang, S.W. Zhang, R.Y. Cao, X.L. Deng, Z.P. Li, X.J. Xu, Constructing the novel ultrafine amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance. Sci. Rep. 7(1), 8686 (2017)CrossRefGoogle Scholar
  26. 26.
    R.Y. Cao, H.C. Yang, X.L. Deng, S.W. Zhang, X.J. Xu, In-situ synthesis of amorphous silver silicate/carbonate composites for selective visible-light photocatalytic decomposition. Sci. Rep. 7(1), 15001 (2017)CrossRefGoogle Scholar
  27. 27.
    S.W. Zhang, H.H. Gao, Y.S. Huang, X.X. Wang, T. Hayat, J.X. Li, X.J. Xu, X.K. Wang, Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation. Environ. Sci. Nano 5(5), 1179–1190 (2018)CrossRefGoogle Scholar
  28. 28.
    D.J. Yang, C.C. Chen, Z.F. Zheng, H.W. Liu, E.R. Waclawik, Z.M. Yan, Y.N. Huang, H.J. Zhang, J.C. Zhao, H.Y. Zhu, Grafting silica species on anatase surface for visible light photocatalytic activity. Energy Environ. Sci. 4(6), 2279–2287 (2011)CrossRefGoogle Scholar
  29. 29.
    E. Diler, S. Rioual, B. Lescop, B. Thierry, B. Rouvellou, Stability of ZnMgO oxide in a weak alkaline solution. Thin Solid Films 520(7), 2819–2823 (2012)CrossRefGoogle Scholar
  30. 30.
    H.W. Wang, W.Q. Zheng, W.B. Li, F.H. Tian, S.P. Kuang, Y.Y. Bu, J.P. Ao, Control the energy band potential of ZnMgO solid solution with enhanced photocatalytic hydrogen evolution capacity. Appl. Catal. B 217, 523–529 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Nouri, A. Habibi-Yangjeh, M. Azadi, Preparation of Ag/ZnMgO nanocomposites as novel highly efficient photocatalysts by one-pot method under microwave irradiation. J. Photochem. Photobiol. A 281, 59–67 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Excellent photocatalytic performance of Zn(1–x)MgxO/rGO nanocomposites under natural sunlight irradiation and their photovoltaic and UV detector applications. Mater. Des. 107, 47–55 (2016)CrossRefGoogle Scholar
  33. 33.
    R. Yousefi, H.R. Azimi, M.R. Mahmoudian, M. Cheraghizade, Highly enhanced photocatalytic performance of Zn(1–x)MgxO/rGO nanostars under sunlight irradiation synthesized by one-pot refluxing method. Adv. Powder Technol. 29(1), 78–85 (2018)CrossRefGoogle Scholar
  34. 34.
    R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J. Phys. Chem. C 112(35), 13563–13570 (2008)CrossRefGoogle Scholar
  35. 35.
    Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg. Chem. 46(17), 6980–6986 (2007)CrossRefGoogle Scholar
  36. 36.
    Z.Z. Lou, Z.Y. Wang, B.B. Huang, Y. Dai, Synthesis and activity of plasmonic photocatalysts. ChemCatChem 6(9), 2456–2476 (2014)CrossRefGoogle Scholar
  37. 37.
    B. Chai, X. Wang, S.Q. Cheng, H. Zhou, F. Zhang, One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram. Int. 40(1), 429–435 (2014)CrossRefGoogle Scholar
  38. 38.
    Y.Y. Bu, Z.Y. Chen, W.B. Li, Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous g-C3N4 heterojunction material. Appl. Catal. B 144, 622–630 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.State Key Laboratory for Marine Corrosion and ProtectionLuoyang Ship Material Research Institute (LSMRI)QingdaoChina

Personalised recommendations