Advertisement

Fabrication of TiO2 nanorods/nanoparticles mixed phase structure via a simple dip-coating method and its application in perovskite solar cells

  • Shuang Feng
  • A. Runa
  • Li Liu
  • Jun Wang
  • Pengyu Su
  • Tie Liu
  • Shi Su
  • Guijie Zhu
  • Wuyou Fu
  • Haibin Yang
Article

Abstract

In this work, a TiO2 nanorods/nanoparticles hybrid arrays structure is used as the electron transporting layer in perovskite solar cells (PSCs). Compared with the devices based on bare TiO2 nanorods (NRs), the novel structure with rutile/anatase mixed phase can ensure a better growth of perovskite film and efficient separation of electron–hole. The device based on the nanorods/nanoparticles mixed phase structure shows the open-circuit voltage (Voc) of 0.96 V, short-circuit current density (Jsc) of 17.96 mA cm−2, fill factor of 0.61, yielding a power conversion efficiency (PCE) of 10.55% in ambient air under controlled humidity. The overall PCE enhancement of the device is 1.4 times higher than that of the bare NRs based PSCs. This study indicates that the nanorods/nanoparticles mixed phase structure has a great potential for application in PSCs.

Notes

Acknowledgements

This work is financially supported by the Technology Development Program of Jilin Province (Grant No. 20130206078GX) and National Natural Science Foundation of China (No. 51272086). Open Project of State Key Laboratory of Superhard Materials (No. 201713).

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest.

Supplementary material

10854_2018_9785_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2820 KB)

References

  1. 1.
    O.A. Jaramillo-Quintero, M.S. de la Fuente, R.S. Sanchez, I.B. Recalde, E.J. Juarez-Perez, M.E. Rincó, I. Mora-Seró, Nanoscale 8, 6271 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Ge, H.T. Xu, W.Z. Wang, R.N. Cao, Y.L. Wu, W.Q. Xu, J.B. Zhu, F. Xue, F. Hong, R. Xu, F. Xu, L.J. Wang, J. Huang, Vacuum 128, 91 (2016)CrossRefGoogle Scholar
  3. 3.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  4. 4.
    J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 3, 4088 (2011)CrossRefGoogle Scholar
  5. 5.
    H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  6. 6.
    N.J. Jeon, H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, S.I. Seok, J. Am. Chem. Soc. 136, 7837 (2014)CrossRefGoogle Scholar
  7. 7.
    W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science 356, 1376 (2017)CrossRefGoogle Scholar
  8. 8.
    J.F. Li, Z.L. Zhang, H.P. Gao, Y. Zhang, Y.L. Mao, J. Mater. Chem. A 3, 19476 (2015)CrossRefGoogle Scholar
  9. 9.
    M.Z. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Choe, J. Kang, I. Ryu, S.W. Song, H.M. Kim, S. Yim, Sol. Energy 155, 1148 (2017)CrossRefGoogle Scholar
  11. 11.
    N. Islam, M.J. Yang, K. Zhu, Z.Y. Fan, J. Mater. Chem. A 3, 24315 (2015)CrossRefGoogle Scholar
  12. 12.
    S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, H.J. Snaith, J. Phys. Chem. Lett. 6, 432 (2015)CrossRefGoogle Scholar
  13. 13.
    W.-S. Li, T.-R. Lin, H.-T. Yang, Y.-R. Li, K.-C. Chuang, Y.-S. Li, J.-D. Luo, C.-S. Hus, H.-C. Cheng, Jpn. J. Appl. Phys. 57, 06KB03 (2018)CrossRefGoogle Scholar
  14. 14.
    M. Che, L. Zhu, Y.L. Zhao, D.S. Yao, X.Q. Gu, J. Song, Y.H. Qiang, Mater. Sci. Semicond. Process. 56, 29 (2016)CrossRefGoogle Scholar
  15. 15.
    J.Y. Chen, C.C. Chueh, Z.L. Zhu, W.C. Chen, A.K.-Y. Jen, Sol. Energy Mater. Sol. Cells 164, 47 (2017)CrossRefGoogle Scholar
  16. 16.
    S.T. Lv, L.Y. Han, J.Y. Xiao, L.F. Zhu, J.J. Shi, H.Y. Wei, Y.Z. Xu, J. Dong, X. Xu, D.M. Li, S.R. Wang, Y.H. Luo, Q.B. Meng, X.G. Li, Chem. Commun. 50, 6931 (2014)CrossRefGoogle Scholar
  17. 17.
    X. Li, S.-M. Dai, P. Zhu, L.L. Deng, S.Y. Xie, Q. Cui, H. Chen, N. Wang, H. Lin, ACS Appl. Mater. Interfaces 8, 21358 (2016)CrossRefGoogle Scholar
  18. 18.
    H.-S. Kim, J.-W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.-G. Park, Nano Lett. 13, 2412 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Liu, H.Z. Yao, X. Xia, D. Ding, P. Lv, X. Li, J. Wang, B. Zhao, H.C. Li, X.Z. Liu, W.Y. Fu, H.B. Yang, Electrochim. Acta 222, 933 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T.M. Brown, R. Jose, J. Power Sources 283, 61 (2015)CrossRefGoogle Scholar
  21. 21.
    S.S. Mali, C.S. Shim, H.K. Park, J. Heo, P.S. Patil, C.K. Hong, Chem. Mater. 27, 1541 (2015)CrossRefGoogle Scholar
  22. 22.
    H.N. Chen, Z.H. Wei, K.Y. Yan, Y. Yi, J.N. Wang, S.H. Yang, Faraday Discuss. 176, 271 (2014)CrossRefGoogle Scholar
  23. 23.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, S. Afr. J. Chem. 70, 44 (2017)Google Scholar
  24. 24.
    A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, M. Salavati-Niasari, H. Taqriri, S. Bagheri, K. Saberyan, J. Mater. Sci.: Mater. Electron. 26, 5735 (2015)Google Scholar
  25. 25.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 9552 (2015)Google Scholar
  27. 27.
    M. Kinoshita, T. Kamizato, Y. Shimoyama, J. Supercrit. Fluids 138, 193 (2018)CrossRefGoogle Scholar
  28. 28.
    P. Lv, W.Y. Fu, H.B. Yang, H.R. Sun, Y.L. Chen, J.W. Ma, X.M. Zhou, L.C. Tian, W.J. Zhang, M.J. Li, H.Z. Yao, D. Wu, CrystEngComm. 15, 7548 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Yuan, Z.W. Qiu, C.M. Gao, H.L. Zhang, Y.N. Jiang, C.C. Li, J.H. Yu, B.Q. Cao, Appl. Phys. Lett. 108, 033904 (2016)CrossRefGoogle Scholar
  31. 31.
    J.J. Xie, Y. Liu, J.J. Liu, L. Lei, Q.Q. Gao, J.Q. Li, S.W. Yang, J. Power Sources 285, 349 (2015)CrossRefGoogle Scholar
  32. 32.
    X.K. Huang, Z.Y. Hu, J. Xu, P. Wang, J. Zhang, Y.J. Zhu, Electrochim. Acta 231, 77 (2017)CrossRefGoogle Scholar
  33. 33.
    T. Singh, Y. Udagawa, M. Ikegami, H. Kunugita, K. Ema, T. Miyasaka, APL Mater. 5, 016103 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Wang, X.T. Zhang, P.P. Sun, S. Lu, L.L. Wang, C.H. Wang, Y.C. Liu, Electrochim. Acta 130, 290 (2014)CrossRefGoogle Scholar
  35. 35.
    Y.L. Chen, Q. Tao, W.Y. Fu, H.B. Yang, Electrochim. Acta 173, 812 (2015)CrossRefGoogle Scholar
  36. 36.
    X. Zhang, Z.Q. Bao, X.Y. Tao, H.X. Sun, W. Chen, X.F. Zhou, RSC Adv. 4, 64001 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shuang Feng
    • 1
  • A. Runa
    • 1
  • Li Liu
    • 1
  • Jun Wang
    • 1
  • Pengyu Su
    • 1
  • Tie Liu
    • 1
  • Shi Su
    • 1
  • Guijie Zhu
    • 1
  • Wuyou Fu
    • 1
  • Haibin Yang
    • 1
  1. 1.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations