Photodiode based on Pb0.9Cd0.1S ternary alloy semiconductor for solar tracking systems

  • S. Wageh
  • Abdulkerim KarabulutEmail author
  • A. Dere
  • Abdullah G. Al-Sehemi
  • Ahmed A. Al-Ghamdi
  • Farid El-Tantawy
  • F. Yakuphanoglu


The fabrication and photoelectrical properties of the photodiodes based on the ternary alloy of semiconductor nanocrystallite Pb0.9Cd0.1S with coumarin dopant were investigated. The structure, stability, melting temperature and optical bandgap of the prepared nanostructure were characterized by X-ray diffraction, thermogravimetric analysis, Infrared, Raman spectroscopy and UV-VIS-NIR spectroscopies. The characterization of the ternary alloy indicates that the crystal structure of the ternary alloy is cubic with some distortion in (111) direction and has a nanosize of 9 nm. The photoelectrical characteristics of fabricated Si-based photodiodes with coumarin doped PbCdS interfacial layers were investigated by using current–voltage, transient photocurrent and capacitance/conductance-voltage measurements. Some electrical parameters and the effects of illumination on these parameters have been determined from these measurements. Consequently, results of experiments suggest that the ternary alloy Pb0.9Cd0.1S nanocrystallite based photodiode can be suitable for optoelectronic applications.



Authors would like to acknowledge the support of the King Khalid University for this research through a Grant RCAMS/KKU/007-18 under the (Research Center for Advanced Materials Science) at King Khalid University, Kingdom of Saudi Arabia.


  1. 1.
    G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Wageh, A.A. Al-Ghamdi, M. Soylu, Y. Al-Turki, N. Al-Senany, F. Yakuphanoglu, CdS quantum dots and dye co-sensitized nanorods TiO2 solar cell. J. Nanoelectron. Optoelectron. 9, 662–665 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, J. Gao, E.M. Miller, J.M. Luther, M.C. Beard, Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. ACS Nano 8, 614–622 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Wageh, Light emitting devices based on CdSe nanoparticles capped with mercaptoacetic acid. IEEE J. Quantum Electron. 50, 1–8 (2014)CrossRefGoogle Scholar
  5. 5.
    P.K. Swain, H.K. Sehgal, Characterization of Pb1–xMnxS thin films prepared by flash evaporation technique. Thin Solid Films 287, 110–114 (1996)CrossRefGoogle Scholar
  6. 6.
    A. Ishida, N. Sakurai, K. Aikawa, H. Fujiyasu, PbSrS MQW lasers and the effect of quantum well on operation temperature. Solid-State Electron. 37, 1141–1144 (1994)CrossRefGoogle Scholar
  7. 7.
    A.A. Al-Ghamdi, Structural and optical properties of ternary Pb1–xCdxS nanoparticles capped with 3-mercaptopropoionic acid. Sci. Adv. Mater. 9, 795–803 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. de Arquer, F. Gatti, F.H. Koppens, Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Etgar, T. Moehl, S. Gabriel, S.G. Hickey, A. Eychmüller, M. Grätzel, Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano 6, 3092–3099 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Wageh, Ternary ZnS:Te nanoparticles capped with 3-mercaptopropionic acid prepared in aqueous media. J. Mater. Sci. 27, 10877–10887 (2016)Google Scholar
  11. 11.
    A.K. Sood, K. Wu, J.N. Zemel, Metastable Pb1−xCdxS epitaxial films I. Growth and physical properties. Thin Solid Films. 48, 73–86 (1978)CrossRefGoogle Scholar
  12. 12.
    E. Binetti, M. Striccoli, T. Sibillano, C. Giannini, R. Brescia, A. Falqui, R. Comparelli, M. Corricelli, R. Tommasi, A. Agostiano, M.L. Curri, Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange. Sci. Technol. Adv. Mater. 16, 055007 (2015)CrossRefGoogle Scholar
  13. 13.
    N. Gaponik, D.V. Talapin, A.L. Rogach, K. Hoppe, E.V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J. Phys. Chem. B 106, 7177–7185 (2002)CrossRefGoogle Scholar
  14. 14.
    S. Wageh, M. Maize, Structure and optical properties of capped and uncapped CdS nanoparticles prepared in aqueous medium. J. Mater. Sci. 25, 4830–4840 (2014)Google Scholar
  15. 15.
    M. Wuhn, J. Weckesser, C. Woll, Bonding and orientational ordering of long-chain carboxylic acids on Cu(111): investigations using X-ray absorption spectroscopy. Langmuir 17, 7605–7612 (2001)CrossRefGoogle Scholar
  16. 16.
    M.S. Bakshi, P. Thakur, S. Sachar, G. Kaur, T. Singh-Banipal, F. Possmayer, N.O. Petersen, Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals. J. Phys. Chem. C 111, 18087–18098 (2007)CrossRefGoogle Scholar
  17. 17.
    R. Dalven, H. Ehrenreich, F. Seitz, D. Turnbull, Solid State Physics, 28, 179, (Academic, New York, 1973)Google Scholar
  18. 18.
    T.D. Krauss, F.W. Wise, Raman-scattering study of exciton-phonon coupling in PbS nanocrystals. Phys. Rev. B 55, 9860 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Xiong, B. Xi, D. Xu, C. Wang, X. Feng, H. Zhou, Y. Qian, l-Cysteine-assisted tunable synthesis of PbS of various morphologies. J. Phys. Chem. C 111, 16761–16767 (2007)CrossRefGoogle Scholar
  20. 20.
    R. Saran, R.J. Curry, Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10, 81–92 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Ilhan, Electrical characterization of Al/fluorescein sodium salt organic semiconductor/Au diode by current-voltage and capacitance-voltage methods. J. Mater. Electron. Devices 1, 15–20 (2017)Google Scholar
  22. 22.
    S. Altindal, On the origin of increase in the barrier height and decrease in ideality factor with increase temperature in Ag/SiO2/p-Si (MIS) Schottky barrier diodes (SBDs). J. Mater. Electron. Devices 1, 42–47 (2017)Google Scholar
  23. 23.
    O. Paper, H. Koralay, K.B. Akgu, N. Tug, Analysis of inhomogeneous device parameters using current–voltage characteristics of identically prepared lateral Schottky structures. Indian J. Phys. 90, 43–48 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Mensah-Darkwa, R. Ocaya, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, M. Soylu, R.K. Gupta, F. Yakuphanoglu, Dye based photodiodes for solar energy applications. Appl. Phys. A 123, 622 (2017)CrossRefGoogle Scholar
  25. 25.
    E. Heves, Y. Gurbuz, Highly responsive, solution-based Al/PbS and Au-Ti/PbS schottky photodiodes for SWIR detection. IEEE Sens. J. 14, 816–820 (2014)CrossRefGoogle Scholar
  26. 26.
    R.O. Ocaya, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, M. Soylug, F. Yakuphanoglu, Analysis of photoconductive mechanisms of organic-on-inorganic photodiodes. Physica E 93, 284–290 (2017)CrossRefGoogle Scholar
  27. 27.
    S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)CrossRefGoogle Scholar
  28. 28.
    A. Rose, Concepts in Photoconductivity, (Interscience Publishers Inc, New York, 1963)Google Scholar
  29. 29.
    B.A. Gozeh, A. Karabulut, A. Yildiz, F. Yakuphanoglu, Solar light responsive ZnO nanoparticles adjusted using Cd and La Co-dopant photodetector. J. Alloy. Compd. 732, 16–24 (2018)CrossRefGoogle Scholar
  30. 30.
    S. Wageh, W.A. Farooq, A. Tataroğlu, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller. Phys. B 527, 44–51 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Kazim, V. Alia, M. Zulfequar, M.M. Haq, M. Husain, Electrical transport properties of poly [2-methoxy-5-(2′-ethyl hexyloxy) -1,4-phenylene vinylene] thin films doped with acridine orange dye. Phys. B 393, 310–315 (2007)CrossRefGoogle Scholar
  32. 32.
    A. Mekki, R.O. Ocaya, A. Dere, A.A. Al-Ghamdi, K. Harrabi, F. Yakuphanoglu, New photodiodes based graphene-organic semiconductor hybrid materials. Synth. Met. 213, 47–56 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Tataroğlu, O. Dayan, N. Özdemir, Z. Serbetci, A.A. Al-Ghamdi, A. Dere, F. El-Tantawy, F. Yakuphanoglu, Single crystal ruthenium (II) complex dye based photodiode. Dyes Pigments 132, 64–71 (2016)CrossRefGoogle Scholar
  34. 34.
    F. Yakuphanoglu, Photovoltaic properties of the organic–inorganic photodiode based on polymer and fullerene blend for optical sensors. Sensors Actuators A 141, 383–389 (2008)CrossRefGoogle Scholar
  35. 35.
    X.Z. Dang, C.D. Wang, E.T. Yu, S. Boutros, J.M. Redwing, Persistent photoconductivity and defect levels in n-type AlGaN/GaN heterostructures. Appl. Phys. Lett. 72, 2745–2747 (1998)CrossRefGoogle Scholar
  36. 36.
    A. Dere, A. Tataroglu, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, F. Yakuphanoglu, A functional material based photodiode for solar tracking systems. Physica B 520, 76–81 (2017)CrossRefGoogle Scholar
  37. 37.
    C. Casteleiro, R. Schwarz, U. Mardolcar, A. Maçarico, J. Martins, M. Vieira, F. Wuensch, M. Kunst, E. Morgado, P. Stallinga, H.L. Gomes, Spatially-resolved photocapacitance measurements to study defects in a-Si:H based p–i–n particle detectors. Thin Solid Films 516, 5118–5121 (2008)CrossRefGoogle Scholar
  38. 38.
    A. Turut, A. Karabulut, K. Ejderha, N. Bıyıklı, Capacitance–conductance characteristics of Au/Ti/Al2O3/n-GaAs structures with very thin Al2O3 interfacial layer. Mater. Res. Express 2, 46301 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Altındal, H. Uslu, The origin of anomalous peak and negative capacitance in the forward bias capacitance-voltage characteristics of Au/PVA/n-Si structures. J. Appl. Phys. 109, 074503 (2011)CrossRefGoogle Scholar
  40. 40.
    N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Effect of Au8+ irradiation on Ni/n-GaP Schottky diode: its influence on interface state density and relaxation time. Physica B 504, 133–138 (2017)CrossRefGoogle Scholar
  41. 41.
    A. Karabulut, H. Efeoglu, A. Turut, Electrical characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures over a wide measurement temperature. J. Semiconductors 38, 054033 (2017)CrossRefGoogle Scholar
  42. 42.
    A. Nikravan, Y. Badali, Ş Altındal, İ Uslu, İ Orak, On the Frequency and Voltage-Dependent Profiles of the Surface States and Series Resistance of Au/ZnO/n-Si Structures in a Wide Range of Frequency and Voltage. J. Electron. Mater. 46, 5728–5736 (2017)CrossRefGoogle Scholar
  43. 43.
    E.H. Nicollian, A. Goetzberger, A.D. Lopez, Expedient method of obtaining interface state properties from MIS conductance measurements. Solid State Electron. 12, 937–944 (1969)CrossRefGoogle Scholar
  44. 44.
    E.H. Nicollian, A. Goetzberger, The Si-SiO2 interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Technol. J. 46, 1055–1133 (1967)CrossRefGoogle Scholar
  45. 45.
    V.R. Reddy, A. Umapathi, L.D. Rao, Effect of annealing on the electronic parameters of Au/poly (ethylmethacrylate)/n-InP Schottky diode with organic interlayer. Curr. Appl. Phys. 13, 1604–1610 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Wageh
    • 1
    • 2
  • Abdulkerim Karabulut
    • 3
    Email author
  • A. Dere
    • 4
  • Abdullah G. Al-Sehemi
    • 5
    • 6
    • 7
  • Ahmed A. Al-Ghamdi
    • 1
  • Farid El-Tantawy
    • 8
  • F. Yakuphanoglu
    • 4
    • 9
  1. 1.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Physics and Engineering Mathematics Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  3. 3.Department of Electrical and Electronics Engineering, Faculty of EngineeringSinop UniversitySinopTurkey
  4. 4.Nanoscience and Nanotechnology LaboratoryFirat UniversityElazigTurkey
  5. 5.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  6. 6.Research Center for Advanced Materials ScienceKing Khalid UniversityAbhaSaudi Arabia
  7. 7.Unit of Science and Technology, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  8. 8.Department of Physics, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt
  9. 9.Department of Physics, Faculty of ScienceFirat UniversityElazigTurkey

Personalised recommendations