Structure, piezoelectric, ferroelectric and dielectric properties of lead-free ceramics 0.67BiFeO3–0.33BaTiO3xBiGaO3+0.0035MnO2

  • Shibo Guan
  • Huabin YangEmail author
  • Rui Zhang
  • Jinyuan Pang
  • Minhong Jiang
  • Yuanyuan Sun


BF–BT–xBGa (shortened for 0.67BiFeO3–0.33BaTiO3xBiGaO3+0.0035MnO2) lead-free piezoelectric were prepared by a conventional solid-state sintering method. The phase structure, miscostructure, piezoelectric, ferroelectric and dielectric properties were investigated. BiGaO3 doping has little effect on the crystal structure of BF–BT–xBGa lead-free piezoelectric ceramics. All samples are perovskite structure. With the change of x, the structure of the sample is pseudo cubic structure. The ceramics (with x = 0.02 sintered at 990 °C) has Pr = 25 µC/cm2, Ec = 22.059 kV/cm and high depolarization temperature Td = 422 °C. It was found that the piezoelectric properties of the ceramic were improved by addition of BiGaO3. The ceramic shows excellent electrical properties when x is 0.02: d33 = 170 pC/N and Tc = 434 °C. Proper amount of BiGaO3 doping can improve the size of the crystal and promote the sintering of samples. These results show that the addition of BiFeO3–BaTiO3 based ceramics is promising lead-free piezoelectric ceramics for practical applications.



This work was financed by the National Natural Science Foundation of China (11364008) and the Natural Science Foundation of Guangxi (2014GXNSFAA118311) and Guangxi Key Laboratory of Information Materials.


  1. 1.
    V.F. Janas, A. Safari, J. Am. Ceram. Soc. 78, 2945 (1995)CrossRefGoogle Scholar
  2. 2.
    K. Li, G. Pang, H.L.W. Chan, C.L. Choy, J.H. Li, J. Appl. Phys. 95, 5691 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Zhen, J. Li, J. Appl. Phys. 103, 29 (2008)CrossRefGoogle Scholar
  4. 4.
    H. Jin, Y. Li, M.S. Song, L. Chen, X.P. Jia, H.An Ma, Chin. Phys. B 25, 534 (2016)Google Scholar
  5. 5.
    J. Rödel, K. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Wu, D. Xiao, J. Zhu, J. Mater. Sci. Mater. Electron. 26, 9297 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, J. Alloys Compd. 658, 839 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Xing, Z. Tan, J. Yuan, L. Jiang, Q. Chen, J. Wu, W. Zhang, D. Xiao, J. Zhu, RSC Adv. 6, 57210 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Xue, J. Gao, Y. Zhou, X. Ding, J. Sun, T. Lookman, X. Ren, J. Appl. Phys. 117, 400 (2015)Google Scholar
  10. 10.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26, 9776 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Ganjali, A. Badiei, J. Rare Earths 35, 374 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M. Jeddy, J. Mater. Sci. Mater. Electron. 27, 11691 (2016)CrossRefGoogle Scholar
  14. 14.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, ChemInform 34, 1719 (2003)Google Scholar
  15. 15.
    W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203 (2005)CrossRefGoogle Scholar
  16. 16.
    M. Fiebig, J. Phys. D 38, R123 (2005)CrossRefGoogle Scholar
  17. 17.
    S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Appl. Phys. Lett. 94, 062904 (2009)CrossRefGoogle Scholar
  18. 18.
    I. Sosnowskat, T. Peterlin-Neumaier, E. Steichele, J. Phys. C 15, 4835 (1982)CrossRefGoogle Scholar
  19. 19.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, J.F. Scott, Phys. Rev. B 77, 4110 (2008)CrossRefGoogle Scholar
  20. 20.
    F.P. Gheorghiu, A. Ianculescu, P. Postolache, N. Lupu, M. Dobromir, D. Luca, L. Mitoseriu, J. Alloys Compd. 506, 862 (2010)CrossRefGoogle Scholar
  21. 21.
    Z. Yao, C. Xu, H. Liu, H. Hao, M. Cao, Z. Wang, Z. Song, W. Hu, A. Ullah, J. Mater. Sci. Mater. Electron. 25, 4975 (2014)CrossRefGoogle Scholar
  22. 22.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  23. 23.
    S. Zhang, Z. Zhang, P. Zheng, M. Zhao, J. Li, C. Wang, J. Phys. D 41, 189801 (2008)Google Scholar
  24. 24.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)CrossRefGoogle Scholar
  25. 25.
    S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)CrossRefGoogle Scholar
  26. 26.
    M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, Il-K. Jeong, Adv. Mater. 27, 6976 (2016)CrossRefGoogle Scholar
  27. 27.
    Q. Zhou, C. Zhou, H. Yang, C. Yuan, G. Chen, L. Cao, Q. Fan, J. Mater. Sci. Mater. Electron. 25, 196 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Zhang, Y. Shen, Y. Qiu, Y. Liu, R. Xiong, J. Shi, J. Wei, ACS Sustain. Chem. Eng. 5, 4630 (2017)CrossRefGoogle Scholar
  29. 29.
    D.-Y. Lu, Y.-Y. Peng, J. Ceram. Soc. Jpn. 124, 455 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations