Effects of Ta2O5 addition on relaxation behavior and electric properties of PMS–PNN–PZT ceramics

  • Hong-Wei Zhu
  • De-Yi ZhengEmail author
  • Xue-Jie Wang
  • Liu Yang
  • Chao Fang
  • Ze-Hui Peng


Pb(Mn1/3Sb2/3)0.01(Ni1/3Nb2/3)0.495(Zr0.3Ti0.7)0.495O3+x wt% Ta2O5 (PMS–PNN–PZT, x = 0, 0.2, 0.4, 0.6, 0.8) lead piezoelectric ceramics were prepared by a traditional two-step solid-state reaction method. The effect of Ta2O5 content on the phase structure, microstructure, electrical properties and dielectric relaxation of PMS–PNN–PZT ceramics was investigated. The XRD patterns show that all ceramics have pure perovskite structure. Ta2O5 doping can promote the grain growth and improve electrical properties. And the ceramics have high relaxation behavior. When x = 0.4, it exhibits optimum electrical performance: d33 = 805 pC/N, kp = 66%, εr = 6838, tanδ = 1.4%, Tc = 118.5 °C, γ = 1.9618, Ec = 3.652 kV/cm, Pr = 21.91 µC/cm2. This indicates that Ta2O5 can be used as an effective dopant in PMS–PNN–PZT ceramics and the ceramics can be used as the main material for multilayer ceramic capacitors and electro-strictive actuators.



The authors acknowledge the support of project of Guizhou Provincial Education Department (QJH KY Z [2017]001) and Guizhou Provincial Science and Technology Department (QKH LH Z [2017]7248).


  1. 1.
    R. Cao, G. Li, J. Zeng et al., The Piezoelectric and dielectric properties of 0.3Pb(Ni1/3Nb2/3)O3-xPbTiO3-(0.7-x)PbZrO3 ferroelectric ceramics near the morphotropic phase boundary. J. Am. Ceram. Soc. 93(3), 737–741 (2010)CrossRefGoogle Scholar
  2. 2.
    W.P. Chu, C.P. Chong, C.K. Liu et al., Placement of piezoelectric ceramic sensors in ultrasonic wire-bonding transducers. Microelectron. Eng. 66(1), 750–759 (2003)CrossRefGoogle Scholar
  3. 3.
    Z.H. Peng, D.Y. Zheng, T. Zhou et al., Effects of Co2O3 doping on electrical properties and dielectric relaxation of PMS-PNN-PZT ceramics. J. Mater. Sci. Mater. Electron. 5, 1–8 (2018)Google Scholar
  4. 4.
    G.G. Peng, D.Y. Zheng, S.M. Hu et al., Effects of rare-earth Sm2O3 addition on relaxation behavior and electric properties of 0.5PNN-0.5PZT ceramics. J. Mater. Sci. Mater. Electron. 27(6), 5509–5516 (2016)CrossRefGoogle Scholar
  5. 5.
    T. Stevenson, D.G. Martin, P.I. Cowin et al., Piezoelectric materials for high temperature transducers and actuators. J. Mater. Sci. Mater. Electron. 26(12), 9256–9267 (2015)CrossRefGoogle Scholar
  6. 6.
    Q. Liao, X. Chen, X. Chu et al., Effect of Fe doping on the structure and electric properties of relaxor type BSPT-PZN piezoelectric ceramics near the morphotropic phase boundary. Sensors Actuators A Phys 201(10), 222–229 (2013)CrossRefGoogle Scholar
  7. 7.
    E.F. Alberta, A.S. Bhalla, Piezoelectric and dielectric properties of transparent Pb(Ni1/3Nb2/3)1-x-yZrxTiyO3 ceramics prepared by hot isostatic pressing[J]. Int. J. Inorg. Mater. 3(01), 987–995 (2015)Google Scholar
  8. 8.
    S. Fujii, E. Fujii, R. Takayama et al., Preparation of Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 thin films by RF-magnetron sputtering and their electrical and piezoelectric properties. Jpn. J. Appl. Phys. 48(1), 015502–015502 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Brajesh, A.K. Himanshu, H. Sharma et al., Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic. Phys B Condens. Matter 407(4), 635–641 (2012)CrossRefGoogle Scholar
  10. 10.
    T. Yu, G. Zhang, Y. Yu et al. Pyroelectric energy harvesting devices based-on Pb[(MnxNb1–x)1/2(MnxSb1–x)1/2]y(ZrzTi1–z)1–yO3 ceramics. Sensors Actuators A Phys, 223, 159–166 (2015)CrossRefGoogle Scholar
  11. 11.
    D. Wang, M. Cao, S. Zhang, Phase diagram and properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 polycrystalline ceramics. J. Eur. Ceram. Soc. 32(2), 433–439 (2012)CrossRefGoogle Scholar
  12. 12.
    D. Wang, M. Cao, S. Zhang, Investigation of ternary system PbHfO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. J. Am. Ceram. Soc. 95(10), 3220–3228 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Li, D. Wang, W. Cao et al., Effect of MnO2 addition on relaxor behavior and electrical properties of PMNST ferroelectric ceramics. Ceram. Int. 41(8), 9647–9654 (2015)CrossRefGoogle Scholar
  14. 14.
    D. Wang, J. Li, M. Cao et al., Effects of Nb2O5 additive on the piezoelectric and dielectric properties of PHT-PMN ternary ceramics near the morphotropic phase boundary. Phys Status Solidi 211(1), 226–230 (2014)CrossRefGoogle Scholar
  15. 15.
    D. Wang, Q. Zhao, M. Cao et al., Dielectric, piezoelectric, and ferroelectric properties of Al2O3 and MnO2 modified PbSnO3-PbTiO3-Pb(Mg1/3Nb2/3)O3 ternary ceramics. Phys Status Solidi 210(7), 1363–1368 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Li, J. Yuan, D. Wang et al., Effects of Nb, Mn doping on the structure, piezoelectric, and dielectric properties of 0.8Pb(Sn0.46Ti0.54)O3-0.2Pb(Mg1/3Nb2/3)O3 piezoelectric ceramics. J. Am. Ceram. Soc. 96(11), 3440–3447 (2013)CrossRefGoogle Scholar
  17. 17.
    F. Rubio-Marcos, J.F. Fernandez, D.A. Ochoa et al., Understanding the piezoelectric properties in potassium-sodium niobate-based lead-free piezoceramics: interrelationship between intrinsic and extrinsic factors. J. Eur. Ceram. Soc. 37(11), 3501–3509 (2017)CrossRefGoogle Scholar
  18. 18.
    F. Zeng, Q. Liu, E. Cai et al., Relaxor phenomenon of (1-x)(Ba0.85Ca0.15)(Zr0.09Ti0.91)O3-xTa+ 0.6wt.%Li2CO3, ceramics with high piezoelectric constant and Curie temperature. Ceram. Int. 44, 10677–10684 (2018)CrossRefGoogle Scholar
  19. 19.
    D. Lin, K.W. Kwok, H.L.W. Chan, Phase transition and electrical properties of (K0.5 Na0.5)(Nb1 – xTax)O3 lead-free piezoelectric ceramics. Appl. Phys. A 91(1), 167–171 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Du, F. An, Z. Xu et al., Effects of BiFe0.5Ta0.5O3 addition on electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Ceram. Int. 42(1), 1943–1949 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Pereira, A.G. Peixoto, M.J.M. Gomes, Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J. Eur. Ceram. Soc. 21(10–11), 1353–1356 (2001)CrossRefGoogle Scholar
  22. 22.
    G.G. Peng, D.Y. Zheng, C. Cheng et al., Effect of rare-earth addition on morphotropic phase boundary and relaxation behavior of the PNN-PZT ceramics. J. Alloys Compds. 693, 1250–1256 (2017)CrossRefGoogle Scholar
  23. 23.
    J. Ji, B. Fang, X. Zhao et al., Effects of nano-sized BCZT on structure and electrical properties of KNN-based lead-free piezoceramics. J. Mater. Sci. Mater. Electron. 29(6), 1–10 (2017)Google Scholar
  24. 24.
    Z. LI, L. ZHANG, X. YAO, Dielectric properties anomaly of (1-x) Pb(Ni1/3Nb2/3)-xPbTiO3 ceramics near the morphotropic phase boundary. J. Mater. Res. 16(3), 834–836 (2001)CrossRefGoogle Scholar
  25. 25.
    Y. Yu, J. Wu, T. Zhao et al., MnO2 doped PSN-PZN-PZT piezoelectric ceramics for resonant actuator application. J. Alloys Compds. 615(31), 676–682 (2014)CrossRefGoogle Scholar
  26. 26.
    H. Cheng, H. Du, W. Zhou et al., Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc. 96(3), 833–837 (2013)CrossRefGoogle Scholar
  27. 27.
    N. Pisitpipathsin, P. Kantha, K. Pengpat et al., Influence of Ca substitution on microstructure and electrical properties of Ba(Zr,Ti)O3 ceramics. Ceram. Int. 39(2), S35–S39 (2013)CrossRefGoogle Scholar
  28. 28.
    R. Nie, Q. Zhang, Y. Yue et al., Properties of low-temperature sintering PNN-PMW-PSN-PZT piezoelectric ceramics with Ba(Cu1/2W1/2)O3 sintering aids. Int. J. Appl. Ceram. Technol. 13(6), 1119–1124 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Promsawat, A. Watcharapasorn, Z. Ye et al., Enhanced dielectric and ferroelectric properties of Pb(Mg1/3Nb2/3)0.65Ti0.35O3 ceramics by ZnO modification. J. Am. Ceram. Soc. 98(3), 848–854 (2015)CrossRefGoogle Scholar
  30. 30.
    C. Lei, K.P. Chen, X.W. Zhang et al., Study of the structure and dielectric relaxation behavior of Pb(Ni1/3Nb2/3)-PbTiO3 ferroelectric ceramics. Solid State Commun. 123(10), 445–450 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong-Wei Zhu
    • 1
  • De-Yi Zheng
    • 2
    Email author
  • Xue-Jie Wang
    • 1
    • 3
  • Liu Yang
    • 2
  • Chao Fang
    • 2
  • Ze-Hui Peng
    • 2
  1. 1.College of Big Data and Information EngineeringGui Zhou UniversityGuiyangChina
  2. 2.College of Materials and MetallurgyGui Zhou UniversityGuiyangChina
  3. 3.Guizhou Zhenhua Electronic Information Industry Technology Research Co., LtdGuiyangChina

Personalised recommendations