Solvothermal synthesis of CuS/Cu(OH)2 nanocomposite electrode materials for supercapacitor applications

  • Perumal Naveenkumar
  • Guruviah Paruthimal Kalaignan
  • Subramanian Arulmani
  • Sambandam Anandan


In this work, we have synthesized the CuS/Cu(OH)2 nanocomposite electrode materials by the simple solvothermal method. The crystal structure, phase purity and the presence of functional groups in the metal sulfide/ hydroxide are confirmed by XRD and FTIR techniques. The SEM images of nanocomposite have sphere like morphology with small agglomerations. Electrochemical results show the high specific capacitance of CuS/Cu(OH)2 composite is 845.5 F/g (capacity of 93.9 mAh/g) which is higher than that of individuals of Cu(OH)2-419.7 F/g (capacity of 46.6 mAh/g) and CuS-738.3 F/g (capacity of 82 mAh/g) at a fixed current density of 1 mA/cm2. Further, the composite gives a better result as in the form of capacitance retention (78.6%) over 1000 continuous charge–discharge cycles. Consequently, the results suggest that CuS/Cu(OH)2 nanocomposite can be used as a promising electrode material for supercapacitor applications.



The author sincerely thanks UGC, New Delhi for providing the financial assistance under the scheme of “UGC-BSR Fellowships in Sciences” to carry out this research work and thanks to, Department of Physics, Alagappa University, Karaikudi, Tamilnadu for providing the XRD Facilities.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1300816 (2014)CrossRefGoogle Scholar
  3. 3.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  4. 4.
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Arunachalam, R.K.V. Prataap, R. Pavul Raj, S. Mohan, J. Vijayakumar, L. Péter, M.A. Ahmad, Surf. Eng. (2018). CrossRefGoogle Scholar
  6. 6.
    J. Xu, Y. Xue, J. Cao, G. Wang, Y. Li, W. Wang, Z. Chen, RSC Adv. 6, 5541 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Zhu, M. Wu, M.H. Ge, H. Zhang, S.K. Li, C.H. Li, J. Power Sources 306, 593 (2016)CrossRefGoogle Scholar
  8. 8.
    G.R. Fu, Z.A. Hu, L.J. Xie, X.Q. Jin, Y.L. Xie, Y.X. Wang, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, Int. J. Electrochem. Sci. 4, 1052 (2009)Google Scholar
  9. 9.
    A.D. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, A. Abudula, J. Power Sources 306, 526 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Arulmani, J.J. Wu, S. Anandan, Electrochim. Acta 246, 737 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Peng, L. Fan, C. Wei, X. Liu, H. Zhang, W. Xu, J. Xu, Carbohyd. Polym. 157, 344 (2017)CrossRefGoogle Scholar
  12. 12.
    C. Fu, H. Zhou, R. Liu, Z. Huang, J. Chen, Y. Kuang, Mater. Chem. Phys. 132, 596 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, Y. Li, H. Kang, T. Jin, L. Jiao, Mater. Horiz. 3, 402 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Li, W. Cheng, X. Liu, C. Wang, W. Li, S. Yu, J. Supercrit. Fluids 133, 429 (2018)CrossRefGoogle Scholar
  15. 15.
    H.-J. Kim, J.-H. Kim, C.S.S. Pavan Kumar, D. Punnoose, S.-K. Kim, C.V.V.M. Gopi, S. Srinivasa Rao, J. Electroanal. Chem. 739, 20 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Chen, R. Prasada Rao, S. Adams, Solid State Ionics 268, 300 (2014)CrossRefGoogle Scholar
  17. 17.
    A.K. Dutta, S. Das, P.K. Samanta, S. Roy, B. Adhikary, P. Biswas, Electrochim. Acta 144, 282 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Heydari, S.E. Moosavifard, S. Elyasi, M. Shahraki, Appl. Surf. Sci. 394, 425 (2017)CrossRefGoogle Scholar
  19. 19.
    Z. Stevic, M. Raji-Vujasinovi, J. Power Sources 160, 1511 (2006)CrossRefGoogle Scholar
  20. 20.
    T. Zhu, B. Xia, L. Zhou, X. Wen. J. Mater. Chem. 22, 7851 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Peng, G. Ma, J. Mu, K. Sun, Z. Lei, Mater. Lett. 122, 25 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, Electrochim. Acta 139, 401 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, H. Feng, J. Yang, Q. Qin, H. Fan, C. Wei, W. Zheng, ACS Appl. Mater. Interfaces 7, 21735 (2015)CrossRefGoogle Scholar
  24. 24.
    K.J. Huang, J.Z. Zhang, Y. Fan, J. Alloy. Compd. 625, 158 (2015)CrossRefGoogle Scholar
  25. 25.
    D. He, G. Wang, G. Liu, J. Bai, H. Suo, C. Zhao, J. Alloy. Compd. 699, 706 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Kang, J. Sheng, Y. Ji, H. Wen, X.Z. Fu, G. Du, R. Sun, C.P. Wong, Chem. Select 2, 9570 (2017)Google Scholar
  27. 27.
    S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, C.L. Mak, Y. Wang, H. Huang, J. Mater. Chem. A 4, 14781 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P. Wong, J. Mater. Chem. A 3, 17385 (2015)CrossRefGoogle Scholar
  29. 29.
    V.V. Jadhav, D.V. Shinde, S.A. Patil, M.K. Zate, S. Pawar, A. Al-Osta, R.S. Mane, K.N. Hui, K.S. Hui, S.-H. Han, J. Nanoeng. Nanomanuf. 4, 168 (2014)CrossRefGoogle Scholar
  30. 30.
    K.V. Gurav, U.M. Patil, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, P.S. Patil, C.D. Lokhande, J.H. Kim, J. Alloy. Compd. 573, 27 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Pramanik, S. Maiti, S. Mahanty, Dalton Trans. 44, 14604 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Ghasemi, M. Jafari, F. Ahmadi, Electrochim. Acta 210, 225 (2016)CrossRefGoogle Scholar
  33. 33.
    P. Asen, S. Shahrokhian, J. Phys. Chem. C 121, 6508 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Lu, X. Liu, W. Wang, J. Cheng, H. Yan, C. Tang, J.-K. Kim, Y. Luo, Sci. Rep. 5, 16584 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Cariati, Clays Clay Miner. 29, 157 (1981)CrossRefGoogle Scholar
  36. 36.
    S.K. Shinde, V.J. Fulari, D.Y. Kim, N.C. Maile, R.R. Koli, H.D. Dhaygude, G.S. Ghodake, Colloids Surf.B 156, 165 (2017)CrossRefGoogle Scholar
  37. 37.
    D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Electroanal. Chem. 712, 40 (2014)CrossRefGoogle Scholar
  38. 38.
    M.-S. Park, J.-S. Yu, K.J. Kim, G. Jeong, J.-H. Kim, Y.-N. Jo, U. Hwang, S. Kang, T. Woo, Y.-J. Kim, Phys. Chem. Chem. Phys. 14, 6796 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Heydari, S.E. Moosavifard, M. Shahraki, S. Elyasi, J. Energy Chem. 26, 762 (2017)CrossRefGoogle Scholar
  40. 40.
    C. Chen, Q. Zhang, T. Ma, W. Fan, J. Nanosci. Nanotechnol. 17, 2811 (2017)CrossRefGoogle Scholar
  41. 41.
    B. De, J. Balamurugan, N.H. Kim, J.H. Lee, ACS Appl. Mater. Interfaces 9, 2459 (2017)CrossRefGoogle Scholar
  42. 42.
    J. Guo, X. Zhang, Y. Sun, X. Zhang, L. Tang, X. Zhang, J. Power Sources 355, 31 (2017)CrossRefGoogle Scholar
  43. 43.
    Z. Ji, X. Shen, H. Zhou, K. Chen, Ceram. Int. 41, 8710 (2015)CrossRefGoogle Scholar
  44. 44.
    K. Wang, C. Zhao, Z. Zhang, S. Min, X. Qian, RSC Adv. 6, 16963 (2016)CrossRefGoogle Scholar
  45. 45.
    Z. Tian, H. Dou, B. Zhang, W. Fan, X. Wang, Electrochim. Acta 237, 109 (2017)CrossRefGoogle Scholar
  46. 46.
    W. Fu, W. Han, H. Zha, J. Mei, Y. Li, Z. Zhang, E. Xie, Phys. Chem. Chem. Phys. 18, 24471 (2016)CrossRefGoogle Scholar
  47. 47.
    W. Xiao, W. Zhou, T. Feng, Y. Zhang, H. Liu, J. Mater. Sci.: Mater. Electron. 28, 5931 (2017)Google Scholar
  48. 48.
    C. Justin Raj, B.C. Kim, W.J. Cho, W.G. Lee, Y. Seo, K.H. Yu, J. Alloy. Compd. 586, 191 (2014)CrossRefGoogle Scholar
  49. 49.
    H. Peng, G. Ma, K. Sun, J. Mu, H. Wang, Z. Lei, J. Mater. Chem. A 2, 3303 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Perumal Naveenkumar
    • 1
  • Guruviah Paruthimal Kalaignan
    • 1
  • Subramanian Arulmani
    • 2
  • Sambandam Anandan
    • 2
  1. 1.Materials Research Laboratory, Department of Industrial ChemistryAlagappa UniversityKaraikudiIndia
  2. 2.Nanomaterials and Solar Energy Conversion Lab, Department of ChemistryNational Institute of TechnologyTrichyIndia

Personalised recommendations