Advertisement

Tuning of dielectric and impedance properties of PVDF by incorporation of Mg doped PZT

  • S. K. Pradhan
  • Amit Kumar
  • P. Kour
  • Rabichandra Pandey
  • Pawan Kumar
  • Manoranjan Kar
  • A. N. Sinha
Article
  • 75 Downloads

Abstract

Ferroelectric polymer nanocomposites of poly(vinylidene fluoride) (PVDF) and Mg doped PZT (PMZT) have been prepared by solvent casting method. The existence of β, γ and δ polar phases and α nonpolar phase of PVDF have been observed from the X-ray diffraction (XRD) and FTIR analysis. Both rhombohedral as well as tetragonal crystal phases of PZT at morphotropic phase boundary (MPB) is also observed. The characteristic peaks of PVDF in the FTIR spectra are unaffected with the incorporation of PMZT. Dielectric properties were studied as a function of frequency and temperature. The microstructure of PVDF–PMZT composite has been studied by employing SEM technique. Maximum dielectric constant of 32 with minimum dielectric loss of 0.0053 were obtained at 100 kHz for 6 mol% PMZT composite. The ac conductivity follows the Jonscher power law which exhibits the least value of interaction between mobile ions and lattice. Both grain and grain boundary contributions have been considered to explain the impedance behavior of the sample. The optimum loading percentage of PMZT in PVDF matrix is found to be 6 mol%. The structural results obtained from XRD and FTIR are well correlated with the physical parameters obtained from impedance measurement.

References

  1. 1.
    M. Mai, S. Ke, P. Lin, X. Zeng, J. Nanomater. 16(1), 181 (2015)Google Scholar
  2. 2.
    Q. Li, Q. Wang, Macromol. Chem. Phys. 217, 1228 (2016)CrossRefGoogle Scholar
  3. 3.
    A.J. Lovinger, Macromolecules 14, 322 (1981)CrossRefGoogle Scholar
  4. 4.
    J.B. Lando, H.G. Olf, A. Peterlin, J. Polym. Sci. A 4, 941 (1966)CrossRefGoogle Scholar
  5. 5.
    J. Lovinger, in Developments in Crystalline Polymers, ed. by D.C. Basset (Applied Science Publishers Ltd, Englewood, 1982)Google Scholar
  6. 6.
    Z. Ye, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Synthesis, Properties and Applications (CRC Press, Boca Raton, 2008)Google Scholar
  7. 7.
    R. Guo, L.E. Cross, S.E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84(23), 5423 (2000)CrossRefGoogle Scholar
  8. 8.
    A.G. Khachaturyan, Phil. Mag. 90(1–4), 37 (2010)CrossRefGoogle Scholar
  9. 9.
    M.E. Lines, A.M. Glass, Principle and Application of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)Google Scholar
  10. 10.
    R.E. Newnham, Electroceram. Rep. Prog. Phys. 52, 123 (1989)CrossRefGoogle Scholar
  11. 11.
    G.H. Haerting, Ferroelectric ceramic: history and technology. J. Am. Ceram. Soc. 54, 1 (1971)CrossRefGoogle Scholar
  12. 12.
    B. Jaffe, R.S. Roth, S. Marzullo, J. Res. Natl. Bur. Stan. 55(5), 239 (1955)CrossRefGoogle Scholar
  13. 13.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
  14. 14.
    D.V. Taylor, D. Damjanovic, Appl. Phys. Lett. 76(12), 1615 (2000)CrossRefGoogle Scholar
  15. 15.
    B. Noheda, L. Wu, Y. Zhu, Phys. Rev. B 66(6), 060103 (2002)CrossRefGoogle Scholar
  16. 16.
    W.L. Warren, G.E. Pike, K. Vanheusden, D. Dimos, B.A. Tuttle, J. Robertson, J. Appl. Phys. 79(12), 9250 (1996)CrossRefGoogle Scholar
  17. 17.
    R.A. Eichel, P. Erhart, P. Träskelin, K. Albe, H. Kungl, M.J. Hoffmann, Phys. Rev. Lett. 100(9), 095504 (2008)CrossRefGoogle Scholar
  18. 18.
    P. Kour, P. Kumar, S.K. Sinha, M. Kar, Solid State Commun. 190, 33 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Kour, P. Kumar, M. Kar, S.K. Sinha, in AIP Conference Proceedings, vol. 1536 (2013), p. 667Google Scholar
  20. 20.
    A.K. Biswal, S. Das, A. Roy, in IOP Conference Series: Materials Science and Engineering, vol. 178 (2017), p. 012002CrossRefGoogle Scholar
  21. 21.
    A. Matei, V. Ţucureanu, P. Vlăzan, I. Cernica, M. Popescu, C. Romaniţan, in AIP Conference Proceedings, vol. 1916 (2017), p. 030006Google Scholar
  22. 22.
    J.S. Yun, C.K. Park, Y.H. Jeong, J.H. Cho, J.H. Paik, S.H. Yoon, K.R. Hwang, Nanomater. Nanotechnol. 6, 20 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Kumar, S.F. Ali, A. Arockiarajan, Energy harvesting from crystalline and conductive polymer composites, in Smart Polymer Nanocomposites (Springer, Cham, pp 43–75)CrossRefGoogle Scholar
  24. 24.
    Q. Guo, Q. Xue, T. Wu, X. Pan, J. Zhang, X. Li, L. Zhu, Compos. A 87, 46 (2016)CrossRefGoogle Scholar
  25. 25.
    X.L. Xu, C.J. Yang, J.H. Yang, T. Huang, N. Zhang, Y. Wang, Z.W. Zhou, Compos. B 109, 91 (2017)CrossRefGoogle Scholar
  26. 26.
    C. Zhang, Q. Chi, J. Dong, Y. Cui, X. Wang, L. Liu, Q. Lei, Sci. Rep. 6, 33508 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Li, X. Ge, L. Wang, L. Wang, W. Liu, H. Li, Y. Kwok, R. Li, S. Chin, Tjon, Curr. Nanosci. 9(5), 679 (2013)CrossRefGoogle Scholar
  28. 28.
    R. Li, Z. Zhao, C. Zixuan, P. Jianzhong, Mater. Express 7(6), 536 (2017)CrossRefGoogle Scholar
  29. 29.
    P. Kour, P. Kumar, M. Kar, S.K. Sinha, in AIP Conference Proceedings, vol. 1512 (2013), p. 1276Google Scholar
  30. 30.
    Y.J. Choi, M.J. Yoo, H.W. Kang, H.G. Lee, S.H. Han, S. Nahm, J. Electroceram. 30, 30 (2013)CrossRefGoogle Scholar
  31. 31.
    L. Zhang, P. Bass, Z.-Y. Cheng, J. Adv. Dielectrics 5, 1550012 (2015)CrossRefGoogle Scholar
  32. 32.
    A.K. Zak, W.C. Gan, W.A. Majid, M. Darroudi, T.S. Velayutham, Ceram. Int. 37(5), 1653 (2011)CrossRefGoogle Scholar
  33. 33.
    V. Tiwari, G. Srivastava, J. Polym. Res. 21, 587 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Gowdhaman, M.H. Pandya, P.R. Kumar, V. Annamalai, J. Environ. Nanotechnol. 4, 28 (2015)CrossRefGoogle Scholar
  35. 35.
    P. Thongsanitgarn, A. Watcharapasorn, S. Jiansirisomboon, Surf. Rev. Lett. 17, 1 (2010)CrossRefGoogle Scholar
  36. 36.
    S.F. Mendes, C.M. Costa, V. Sencadas, J.S. Nunes, P. Costa, J.R. Gregorio, S.L. Mendes, J. Appl. Phys. A 96, 899 (2009)CrossRefGoogle Scholar
  37. 37.
    P. Han, S. Pang, J. Fan, X. Shen, T. Pan, Sens. Actuators A 204, 74 (2013)CrossRefGoogle Scholar
  38. 38.
    T. Lei, X. Cai, X. Wang, L. Yu, X. Hu, G.L. Zheng, W. Wang, D. Wu, D. Sun, L. Lin, RSC Adv. 3(47), 24952 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Chen, K. Yao, F.E.H. Tay, C.L. Liow, J. Appl. Phys. 102(10), 104108 (2007)CrossRefGoogle Scholar
  40. 40.
    D.M. Esterly, B.J. Love, J. Polym. Sci. B 42(1), 91 (2004)CrossRefGoogle Scholar
  41. 41.
    X. Cai, T. Lei, D. Sun, L. Lin, RSC Adv. 7(25), 15382 (2017)CrossRefGoogle Scholar
  42. 42.
    R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polym. J. 3(5), 60 (1972)Google Scholar
  43. 43.
    G.T. Davis, J.E. McKinney, M.G. Broadhurst, S. Roth, J. Appl. Phys. 49(10), 4998 (1978)CrossRefGoogle Scholar
  44. 44.
    P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39(4), 683 (2014)CrossRefGoogle Scholar
  45. 45.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  46. 46.
    C. Suryanarayana, N. Grant, X-ray Diffraction: A Practical Approach (Plenum Press, New York, 1998)CrossRefGoogle Scholar
  47. 47.
    L. Yu, P. Cebe, Polymer 50(9), 2133 (2009)CrossRefGoogle Scholar
  48. 48.
    V. Ostaševičius, I. Milašauskaitė, R. Daukševičius, V. Baltrušaitis, V. Grigaliūnas, I. Prosyčevas, Mechanika 86, 78 (2010)Google Scholar
  49. 49.
    T. Boccaccio, A. Bottino, G. Cpannelli, P. Piaggio, J. Membr. Sci. 210, 315 (2002)CrossRefGoogle Scholar
  50. 50.
    R. Gregorio, M. Cestari, J. Polym. Sci. B 32, 859 (1994)CrossRefGoogle Scholar
  51. 51.
    Z.G. Ye (ed.), Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications (Elsevier, Amsterdam, 2008)Google Scholar
  52. 52.
    L. Kungumadevi, R. Sathyamoorthy, A. Subbarayan, Solid State Electron. 54, 58 (2010)CrossRefGoogle Scholar
  53. 53.
    A.A.M. Farag, A.M. Mansour, A.H. Ammar, M. Abdel Rafea, A.M. Farid, J. Alloys Compd. 513, 40 (2012)CrossRefGoogle Scholar
  54. 54.
    C.R. Mariappan, G. Govindaraj, S. Vinoth Rathan, G. Vijaya, Prakash, Mater. Sci. Eng. B. 121, 2 (2005)CrossRefGoogle Scholar
  55. 55.
    S. Aftab, D.A. Hall, M.A. Aleem, M. Siddiq, J. Mater. Sci.: Mater. Electron. 24(3), 979 (2013)Google Scholar
  56. 56.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  57. 57.
    A.K. Jonscher, Phys. Status Solidi (b) 83(2), 585 (1977)CrossRefGoogle Scholar
  58. 58.
    K.L. Ngai, C.T. White, A.K. Jonscher, Nature 277, 185 (1979)CrossRefGoogle Scholar
  59. 59.
    J.G. Fletcher, A.R. West, J.T.S. Irvine, J. Electrochem. Soc. 142(8), 2650 (1995)CrossRefGoogle Scholar
  60. 60.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9(4), 341 (1941)CrossRefGoogle Scholar
  61. 61.
    J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 2005), pp. 17278–17290Google Scholar
  62. 62.
    A. Kumar, N.M. Kumari, R.S. Katiyar, J. Alloys Compd. 469, 433 (2009)CrossRefGoogle Scholar
  63. 63.
    C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaria, K.L. Ngai, Phys. Rev. Lett. 86(7), 1279 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. K. Pradhan
    • 1
  • Amit Kumar
    • 2
  • P. Kour
    • 3
  • Rabichandra Pandey
    • 4
  • Pawan Kumar
    • 5
  • Manoranjan Kar
    • 4
  • A. N. Sinha
    • 2
  1. 1.Department of Mechanical EngineeringBIT MesraPatnaIndia
  2. 2.Department of Mechanical EngineeringNational Institute of Technology, PatnaPatnaIndia
  3. 3.Department of Applied PhysicsBIT MesraPatnaIndia
  4. 4.Department of PhysicsIndian Institute of Technology, PatnaPatnaIndia
  5. 5.Department of PhysicsMahatma Gandhi Central UniversityMotihariIndia

Personalised recommendations